当前位置: 首页 > news >正文

深圳网站建设怎么选择服务器windos做网站

深圳网站建设怎么选择,服务器windos做网站,昆明免费网站建设,购物网站php源代码对于fcn#xff0c;经常要使用到Deconvolution进行上采样。对于caffe使用者#xff0c;使用Deconvolution上采样#xff0c;其参数往往直接给定#xff0c;不需要通过学习获得。 给定参数的方式很有意思#xff0c;可以通过两种方式实现#xff0c;但是这两种方式并非完…对于fcn经常要使用到Deconvolution进行上采样。对于caffe使用者使用Deconvolution上采样其参数往往直接给定不需要通过学习获得。 给定参数的方式很有意思可以通过两种方式实现但是这两种方式并非完全等价各有各的价值。 第一种方式 通过net_surgery给定 这种方式最开始出现在FCN中。https://github.com/shelhamer/fcn.berkeleyvision.org/blob/master/voc-fcn32s/solve.py 代码如下 import caffe import surgery, scoreimport numpy as np import os import systry:import setproctitlesetproctitle.setproctitle(os.path.basename(os.getcwd())) except:passweights ../ilsvrc-nets/vgg16-fcn.caffemodel# init caffe.set_device(int(sys.argv[1])) caffe.set_mode_gpu()solver caffe.SGDSolver(solver.prototxt) solver.net.copy_from(weights)# surgeries 这里就是对于反卷积层的参数进行初始化 interp_layers [k for k in solver.net.params.keys() if up in k] surgery.interp(solver.net, interp_layers)# scoring val np.loadtxt(../data/segvalid11.txt, dtypestr)for _ in range(25):solver.step(4000)score.seg_tests(solver, False, val, layerscore) 上采样的函数 # make a bilinear interpolation kerneldef upsample_filt(self,size):factor (size 1) // 2if size % 2 1:center factor - 1else:center factor - 0.5og np.ogrid[:size, :size]return (1 - abs(og[0] - center) / factor) * \(1 - abs(og[1] - center) / factor)# set parameters s.t. deconvolutional layers compute bilinear interpolation# N.B. this is for deconvolution without groupsdef interp_surgery(self,net, layers):for l in layers:print lm, k, h, w net.params[l][0].data.shape #仅仅修改w不需要修改bias其为0print(deconv shape:\n)print m, k, h, w if m ! k and k ! 1:print input output channels need to be the same or |output| 1raiseif h ! w:print filters need to be squareraisefilt self.upsample_filt(h)print(filt)net.params[l][0].data[range(m), range(k), :, :] filt 第二种方式直接在Deconvolution中给定参数weight_filler即 代码如下: layer {name: fc8_upsampletype: Deconvolutionbottom: fc8top: fc8_upsampleparam {lr_mult: 0decay_mult: 0}param {lr_mult: 0decay_mult: 0}convolution_param {num_output: 1kernel_size: 16stride: 8pad: 3weight_filler { # 这里相当于上面的直接赋值type: bilinear}} } weight_filler初始化成双线性就等价于直接按照上面的方式赋值。 看起来好像以上两种方法一样但是实际上有不同。主要区别在对于num_output1的情形。 比如对于一个输入是2个通道的map希望对其进行上采样自然我们希望分别对于map放大即可。如果使用Deconvolution则shape大小为2,2,16,16设其大小为16*16.不考虑bias项。 假设按照上面的方式初始化则对于第一种方法得到结果 [0,0,:,:]: [[ 0.00390625 0.01171875 0.01953125 0.02734375 0.03515625 0.04296875 0.05078125 0.05859375 0.05859375 0.05078125 0.04296875 0.03515625 0.02734375 0.01953125 0.01171875 0.00390625] [ 0.01171875 0.03515625 0.05859375 0.08203125 0.10546875 0.12890625 0.15234375 0.17578125 0.17578125 0.15234375 0.12890625 0.10546875 0.08203125 0.05859375 0.03515625 0.01171875] [ 0.01953125 0.05859375 0.09765625 0.13671875 0.17578125 0.21484375 0.25390625 0.29296875 0.29296875 0.25390625 0.21484375 0.17578125 0.13671875 0.09765625 0.05859375 0.01953125] [ 0.02734375 0.08203125 0.13671875 0.19140625 0.24609375 0.30078125 0.35546875 0.41015625 0.41015625 0.35546875 0.30078125 0.24609375 0.19140625 0.13671875 0.08203125 0.02734375] [ 0.03515625 0.10546875 0.17578125 0.24609375 0.31640625 0.38671875 0.45703125 0.52734375 0.52734375 0.45703125 0.38671875 0.31640625 0.24609375 0.17578125 0.10546875 0.03515625] [ 0.04296875 0.12890625 0.21484375 0.30078125 0.38671875 0.47265625 0.55859375 0.64453125 0.64453125 0.55859375 0.47265625 0.38671875 0.30078125 0.21484375 0.12890625 0.04296875] [ 0.05078125 0.15234375 0.25390625 0.35546875 0.45703125 0.55859375 0.66015625 0.76171875 0.76171875 0.66015625 0.55859375 0.45703125 0.35546875 0.25390625 0.15234375 0.05078125] [ 0.05859375 0.17578125 0.29296875 0.41015625 0.52734375 0.64453125 0.76171875 0.87890625 0.87890625 0.76171875 0.64453125 0.52734375 0.41015625 0.29296875 0.17578125 0.05859375] [ 0.05859375 0.17578125 0.29296875 0.41015625 0.52734375 0.64453125 0.76171875 0.87890625 0.87890625 0.76171875 0.64453125 0.52734375 0.41015625 0.29296875 0.17578125 0.05859375] [ 0.05078125 0.15234375 0.25390625 0.35546875 0.45703125 0.55859375 0.66015625 0.76171875 0.76171875 0.66015625 0.55859375 0.45703125 0.35546875 0.25390625 0.15234375 0.05078125] [ 0.04296875 0.12890625 0.21484375 0.30078125 0.38671875 0.47265625 0.55859375 0.64453125 0.64453125 0.55859375 0.47265625 0.38671875 0.30078125 0.21484375 0.12890625 0.04296875] [ 0.03515625 0.10546875 0.17578125 0.24609375 0.31640625 0.38671875 0.45703125 0.52734375 0.52734375 0.45703125 0.38671875 0.31640625 0.24609375 0.17578125 0.10546875 0.03515625] [ 0.02734375 0.08203125 0.13671875 0.19140625 0.24609375 0.30078125 0.35546875 0.41015625 0.41015625 0.35546875 0.30078125 0.24609375 0.19140625 0.13671875 0.08203125 0.02734375] [ 0.01953125 0.05859375 0.09765625 0.13671875 0.17578125 0.21484375 0.25390625 0.29296875 0.29296875 0.25390625 0.21484375 0.17578125 0.13671875 0.09765625 0.05859375 0.01953125] [ 0.01171875 0.03515625 0.05859375 0.08203125 0.10546875 0.12890625 0.15234375 0.17578125 0.17578125 0.15234375 0.12890625 0.10546875 0.08203125 0.05859375 0.03515625 0.01171875] [ 0.00390625 0.01171875 0.01953125 0.02734375 0.03515625 0.04296875 0.05078125 0.05859375 0.05859375 0.05078125 0.04296875 0.03515625 0.02734375 0.01953125 0.01171875 0.00390625]] [0,1,:,:]: [[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]] [1,0,:,:] [[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]] [1,1,:,:]: [[ 0.00390625 0.01171875 0.01953125 0.02734375 0.03515625 0.04296875 0.05078125 0.05859375 0.05859375 0.05078125 0.04296875 0.03515625 0.02734375 0.01953125 0.01171875 0.00390625] [ 0.01171875 0.03515625 0.05859375 0.08203125 0.10546875 0.12890625 0.15234375 0.17578125 0.17578125 0.15234375 0.12890625 0.10546875 0.08203125 0.05859375 0.03515625 0.01171875] [ 0.01953125 0.05859375 0.09765625 0.13671875 0.17578125 0.21484375 0.25390625 0.29296875 0.29296875 0.25390625 0.21484375 0.17578125 0.13671875 0.09765625 0.05859375 0.01953125] [ 0.02734375 0.08203125 0.13671875 0.19140625 0.24609375 0.30078125 0.35546875 0.41015625 0.41015625 0.35546875 0.30078125 0.24609375 0.19140625 0.13671875 0.08203125 0.02734375] [ 0.03515625 0.10546875 0.17578125 0.24609375 0.31640625 0.38671875 0.45703125 0.52734375 0.52734375 0.45703125 0.38671875 0.31640625 0.24609375 0.17578125 0.10546875 0.03515625] [ 0.04296875 0.12890625 0.21484375 0.30078125 0.38671875 0.47265625 0.55859375 0.64453125 0.64453125 0.55859375 0.47265625 0.38671875 0.30078125 0.21484375 0.12890625 0.04296875] [ 0.05078125 0.15234375 0.25390625 0.35546875 0.45703125 0.55859375 0.66015625 0.76171875 0.76171875 0.66015625 0.55859375 0.45703125 0.35546875 0.25390625 0.15234375 0.05078125] [ 0.05859375 0.17578125 0.29296875 0.41015625 0.52734375 0.64453125 0.76171875 0.87890625 0.87890625 0.76171875 0.64453125 0.52734375 0.41015625 0.29296875 0.17578125 0.05859375] [ 0.05859375 0.17578125 0.29296875 0.41015625 0.52734375 0.64453125 0.76171875 0.87890625 0.87890625 0.76171875 0.64453125 0.52734375 0.41015625 0.29296875 0.17578125 0.05859375] [ 0.05078125 0.15234375 0.25390625 0.35546875 0.45703125 0.55859375 0.66015625 0.76171875 0.76171875 0.66015625 0.55859375 0.45703125 0.35546875 0.25390625 0.15234375 0.05078125] [ 0.04296875 0.12890625 0.21484375 0.30078125 0.38671875 0.47265625 0.55859375 0.64453125 0.64453125 0.55859375 0.47265625 0.38671875 0.30078125 0.21484375 0.12890625 0.04296875] [ 0.03515625 0.10546875 0.17578125 0.24609375 0.31640625 0.38671875 0.45703125 0.52734375 0.52734375 0.45703125 0.38671875 0.31640625 0.24609375 0.17578125 0.10546875 0.03515625] [ 0.02734375 0.08203125 0.13671875 0.19140625 0.24609375 0.30078125 0.35546875 0.41015625 0.41015625 0.35546875 0.30078125 0.24609375 0.19140625 0.13671875 0.08203125 0.02734375] [ 0.01953125 0.05859375 0.09765625 0.13671875 0.17578125 0.21484375 0.25390625 0.29296875 0.29296875 0.25390625 0.21484375 0.17578125 0.13671875 0.09765625 0.05859375 0.01953125] [ 0.01171875 0.03515625 0.05859375 0.08203125 0.10546875 0.12890625 0.15234375 0.17578125 0.17578125 0.15234375 0.12890625 0.10546875 0.08203125 0.05859375 0.03515625 0.01171875] [ 0.00390625 0.01171875 0.01953125 0.02734375 0.03515625 0.04296875 0.05078125 0.05859375 0.05859375 0.05078125 0.04296875 0.03515625 0.02734375 0.01953125 0.01171875 0.00390625]] 而第二种方式全部都是[0,0,:,:]这样的矩阵。 以上两种方法应该是第一种对的。因为Deconvolution 其实与卷积类似按照第一种结果才能分别单独地对map上采样而采用第二种则将会得到两个相同的map。因为综合了两个输入map的信息 因此结论 对于多个输入输出的Deconvolution,采用方法1对于单个输入的方法1,2通用。 附上Deconvolution的官方编码 说明 以上的称述有点瑕疵其实caffe已经解决了上述的问题我之前没有好好留意。 关键就在group这个选项。 如果num_output1,则填上group: c 再加上weight_filler: { type: “bilinear” }即可完成初始化。
http://www.sadfv.cn/news/137127/

相关文章:

  • php cms网站建设wordpress首页导航代码
  • 大良营销网站建设机构网店代运营公司
  • 上海cms建站系统福利窝又一个wordpress
  • 新开传奇网站手游文明网站建设方案及管理制度
  • 网站怎样注册备案玉林网站设计
  • 德阳 网站建设王也高清全屏壁纸
  • 免费网站收录入口互联网平台构建怎么写
  • 湖州市建设局网站6建设信用卡网站首页
  • 深圳外贸建站怎样用自己的电脑,做网站
  • 万网域名绑定到其它网站安装wordpress到服务器
  • 石龙东莞网站建设三明市建设局网站
  • 商业网站设计专业做网站视频网站
  • 丽水市住房和城建建设局网站网站建设开户行查询
  • 网站建设广告wordpress标签
  • 网站用什么东西做制作网站的专业公司
  • 福建省南平市建设局网站wordpress企业商城主题
  • 做网站如何变现佛山 网站建设 骏域
  • 儿童做网站社保门户网站建设方案
  • 赞友商城电商平台排名第几soe搜索优化
  • seo网站优化培训找哪些视频网站开发技术书
  • 行业门户网站建站网站开发步骤规划
  • 铜川泰士公馆建设网站vue 做pc网站
  • 蓬莱做网站价格盐城网站建设报价
  • 鸿鹄网站建设百度 网站移动适配
  • 凡科做的网站怎么打不开了南京网站建设网站设计 雷仁网络
  • php网站开发心得3500字重庆网站建设找重庆最佳科技
  • 好的网站分享苏州网站建设报价单
  • php论坛网站建设教程网络营销推广网站收录
  • 一个人搞得定网站建设wordpress 熊掌
  • 景县网站建设公司服务器出租网站