当前位置: 首页 > news >正文

重庆网站制作公司多少钱深圳到北京

重庆网站制作公司多少钱,深圳到北京,网页开发工具怎么打开,网站建设合同的法律密集场景下YOLO系列模型的精度如何#xff1f;本文的主要目的就是想要基于密集场景基于YOLOv7模型开发构建人流计数系统#xff0c;简单看下效果图#xff1a; 这里实验部分使用到的数据集为VSCrowd数据集。 实例数据如下所示#xff1a; 下载到本地解压缩后如下所示…密集场景下YOLO系列模型的精度如何本文的主要目的就是想要基于密集场景基于YOLOv7模型开发构建人流计数系统简单看下效果图 这里实验部分使用到的数据集为VSCrowd数据集。 实例数据如下所示 下载到本地解压缩后如下所示 annotations/目录下存放的是标注数据文件如下所示 单个标注文件内容截图如下所示 videos/目录存放的是图像数据文件如下所示 二者相结合不难发现单个txt标注对应单个子文件夹下面的内容数据 之后就可以对应解析处理数据集了这里就不再赘述了可以参考readme即可。 本文使用到的模型是YOLOv7x模型模型配置文件如下所示 # parameters nc: 1 # number of classes depth_multiple: 1.0 # model depth multiple width_multiple: 1.0 # layer channel multiple# anchors anchors:- [12,16, 19,36, 40,28] # P3/8- [36,75, 76,55, 72,146] # P4/16- [142,110, 192,243, 459,401] # P5/32# yolov7 backbone backbone:# [from, number, module, args][[-1, 1, Conv, [40, 3, 1]], # 0[-1, 1, Conv, [80, 3, 2]], # 1-P1/2 [-1, 1, Conv, [80, 3, 1]],[-1, 1, Conv, [160, 3, 2]], # 3-P2/4 [-1, 1, Conv, [64, 1, 1]],[-2, 1, Conv, [64, 1, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [320, 1, 1]], # 13[-1, 1, MP, []],[-1, 1, Conv, [160, 1, 1]],[-3, 1, Conv, [160, 1, 1]],[-1, 1, Conv, [160, 3, 2]],[[-1, -3], 1, Concat, [1]], # 18-P3/8 [-1, 1, Conv, [128, 1, 1]],[-2, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [640, 1, 1]], # 28[-1, 1, MP, []],[-1, 1, Conv, [320, 1, 1]],[-3, 1, Conv, [320, 1, 1]],[-1, 1, Conv, [320, 3, 2]],[[-1, -3], 1, Concat, [1]], # 33-P4/16 [-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [1280, 1, 1]], # 43[-1, 1, MP, []],[-1, 1, Conv, [640, 1, 1]],[-3, 1, Conv, [640, 1, 1]],[-1, 1, Conv, [640, 3, 2]],[[-1, -3], 1, Concat, [1]], # 48-P5/32 [-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [1280, 1, 1]], # 58]# yolov7 head head:[[-1, 1, SPPCSPC, [640]], # 59[-1, 1, Conv, [320, 1, 1]],[-1, 1, nn.Upsample, [None, 2, nearest]],[43, 1, Conv, [320, 1, 1]], # route backbone P4[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [320, 1, 1]], # 73[-1, 1, Conv, [160, 1, 1]],[-1, 1, nn.Upsample, [None, 2, nearest]],[28, 1, Conv, [160, 1, 1]], # route backbone P3[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1]],[-2, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [160, 1, 1]], # 87[-1, 1, MP, []],[-1, 1, Conv, [160, 1, 1]],[-3, 1, Conv, [160, 1, 1]],[-1, 1, Conv, [160, 3, 2]],[[-1, -3, 73], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [320, 1, 1]], # 102[-1, 1, MP, []],[-1, 1, Conv, [320, 1, 1]],[-3, 1, Conv, [320, 1, 1]],[-1, 1, Conv, [320, 3, 2]],[[-1, -3, 59], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]],[-2, 1, Conv, [512, 1, 1]],[-1, 1, Conv, [512, 3, 1]],[-1, 1, Conv, [512, 3, 1]],[-1, 1, Conv, [512, 3, 1]],[-1, 1, Conv, [512, 3, 1]],[-1, 1, Conv, [512, 3, 1]],[-1, 1, Conv, [512, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [640, 1, 1]], # 117[87, 1, Conv, [320, 3, 1]],[102, 1, Conv, [640, 3, 1]],[117, 1, Conv, [1280, 3, 1]],[[118,119,120], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)]训练数据配置如下所示 # txt path train: ./dataset/images/train val: ./dataset/images/test test: ./dataset/images/test# number of classes nc: 1# class names names: [person]默认100次epoch的迭代计算等待训练完成后我们直接来看结果数据如下所示 【精确率曲线】 精确率曲线Precision-Recall Curve是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。 精确率Precision是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率Recall是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。 绘制精确率曲线的步骤如下 使用不同的阈值将预测概率转换为二进制类别标签。通常当预测概率大于阈值时样本被分类为正例否则分类为负例。 对于每个阈值计算相应的精确率和召回率。 将每个阈值下的精确率和召回率绘制在同一个图表上形成精确率曲线。 根据精确率曲线的形状和变化趋势可以选择适当的阈值以达到所需的性能要求。 通过观察精确率曲线我们可以根据需求确定最佳的阈值以平衡精确率和召回率。较高的精确率意味着较少的误报而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡可以在曲线上选择合适的操作点或阈值。 精确率曲线通常与召回率曲线Recall Curve一起使用以提供更全面的分类器性能分析并帮助评估和比较不同模型的性能。 【Recall曲线】 召回率曲线Recall Curve是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。 召回率Recall是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度Sensitivity或真正例率True Positive Rate。 绘制召回率曲线的步骤如下 使用不同的阈值将预测概率转换为二进制类别标签。通常当预测概率大于阈值时样本被分类为正例否则分类为负例。 对于每个阈值计算相应的召回率和对应的精确率。 将每个阈值下的召回率和精确率绘制在同一个图表上形成召回率曲线。 根据召回率曲线的形状和变化趋势可以选择适当的阈值以达到所需的性能要求。 通过观察召回率曲线我们可以根据需求确定最佳的阈值以平衡召回率和精确率。较高的召回率表示较少的漏报而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡可以在曲线上选择合适的操作点或阈值。 召回率曲线通常与精确率曲线Precision Curve一起使用以提供更全面的分类器性能分析并帮助评估和比较不同模型的性能。 【F1值曲线】 F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率Precision、召回率Recall和F1分数的关系图来帮助我们理解模型的整体性能。 F1分数是精确率和召回率的调和平均值它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点以选择最佳的阈值。 绘制F1值曲线的步骤如下 使用不同的阈值将预测概率转换为二进制类别标签。通常当预测概率大于阈值时样本被分类为正例否则分类为负例。 对于每个阈值计算相应的精确率、召回率和F1分数。 将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上形成F1值曲线。 根据F1值曲线的形状和变化趋势可以选择适当的阈值以达到所需的性能要求。 F1值曲线通常与接收者操作特征曲线ROC曲线一起使用以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析可以根据具体应用场景来选择合适的模型和阈值设置。 【PR曲线】 精确率-召回率曲线Precision-Recall Curve是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率Precision和召回率Recall之间的关系图来帮助我们了解模型在不同阈值下的表现。 精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。 绘制精确率-召回率曲线的步骤如下 使用不同的阈值将预测概率转换为二进制类别标签。通常当预测概率大于阈值时样本被分类为正例否则分类为负例。 对于每个阈值计算相应的精确率和召回率。 将每个阈值下的精确率和召回率绘制在同一个图表上形成精确率-召回率曲线。 根据曲线的形状和变化趋势可以选择适当的阈值以达到所需的性能要求。 精确率-召回率曲线提供了更全面的模型性能分析特别适用于处理不平衡数据集和关注正例预测的场景。曲线下面积Area Under the Curve, AUC可以作为评估模型性能的指标AUC值越高表示模型的性能越好。 通过观察精确率-召回率曲线我们可以根据需求选择合适的阈值来权衡精确率和召回率之间的平衡点。根据具体的业务需求和成本权衡可以在曲线上选择合适的操作点或阈值。 【训练过程可视化】 【batch计算实例】 从训练评估效果来看检测的效果还是很不错的在这批数据集中目标大多是偏小目标的类型且密度相对较高。 【可视化推理实例—图像推理计算】 【可视化推理实例—视频推理计算】 后续有时间可以考虑基于YOLOv7-tiny这一轻量级的网络模型来尝试开发构建密集数据场景下的目标检测模型来对比分析。
http://www.sadfv.cn/news/359208/

相关文章:

  • 个人相册网站建设报告网站建设 课题研究的背景
  • 常平东站是东莞东站吗大连做网站公司排行榜
  • 网站商城开发中山火炬开发区建设局网站
  • 门户网站网站开发网络推广公司开业广告
  • 互动网络游戏公司网站建设网销具体怎么做网站
  • 温县住房与城乡建设局网站哪个网站做推广做的最好
  • asp.net做报名网站怎么选择合适的网站开发公司
  • 企业网站策划书宜宾seo网站建设
  • 贵阳市网站优化南昌网站设计制作
  • 海南网站建设有些网站域名解析错误
  • 长宁网站建设大连 建网站
  • 网站切片 做程序找黄岩做网站企业
  • 建设网站的方案品牌形象设计方案
  • 博客网站素材手机如何制作网站教程
  • 大型网站方案咨询企业网站模板
  • 在网站服务器上建立数据库wordpress 收费会员
  • 怎么改网站模板html开发工具
  • 自建网站 支付宝商城在线
  • 婚恋网网站架构商业招商网站
  • 长沙网站定制建设做淘客网站能干嘛
  • 外网门户网站建设方案电商网站设计哪家好
  • 营销网站html免费wordpress域名能绑定吗
  • 外贸网站打开速度京东网页设计教程
  • 网站后台数据库设计wordpress文章循环不带置顶文章
  • 甘孜建设网站首页百度站长资源
  • 自己做免费网站qq代挂主站网站建设
  • 深圳哪里做网站好wordpress网页防爬
  • 中国档案网站建设现状研究品牌设计公司宣传文案
  • 便利的赣州网站建设广州网络推广万企在线
  • 如何建一个网站多少钱微博推广方式