当前位置: 首页 > news >正文

广州网站建设案件网站建设 菜鸟教程

广州网站建设案件,网站建设 菜鸟教程,施工企业资质划分,怎样用ps做企业网站无论是自己、家人或是朋友、客户的照片#xff0c;免不了有些是黑白的、被污损的、模糊的#xff0c;总想着修复一下。作为一个程序员 或者 程序员的家属#xff0c;当然都有责任满足他们的需求、实现他们的想法。除了这个#xff0c;学习了本文的成果#xff0c;或许你还…无论是自己、家人或是朋友、客户的照片免不了有些是黑白的、被污损的、模糊的总想着修复一下。作为一个程序员 或者 程序员的家属当然都有责任满足他们的需求、实现他们的想法。除了这个学习了本文的成果或许你还可以用来赚点小钱。 Windows下Python及Anaconda的安装与设置、代码执行之保姆指南https://blog.csdn.net/beijinghorn/article/details/134347642 8 GPEN 8.1 论文Paper GAN Prior Embedded Network for Blind Face Restoration in the Wild Paper: https://arxiv.org/abs/2105.06070 Supplementary: https://www4.comp.polyu.edu.hk/~cslzhang/paper/GPEN-cvpr21-supp.pdf Demo: https://vision.aliyun.com/experience/detail?spma211p3.14020179.J_7524944390.17.66cd4850wVDkUQtagNamefacebodychildrenEnhanceFace ModelScope: https://www.modelscope.cn/models/damo/cv_gpen_image-portrait-enhancement/summary 作者 Tao Yang, Peiran Ren, Xuansong Xie, https://cg.cs.tsinghua.edu.cn/people/~tyang Lei Zhang https://www4.comp.polyu.edu.hk/~cslzhang DAMO Academy, Alibaba Group, Hangzhou, China Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China 8.2 功能 8.2.1 旧照修复Face Restoration     8.2.2 纹理重建Selfie Restoration 8.2.3 人脸重建Face Colorization 8.2.4 划痕修复Face Inpainting 8.2.5 Conditional Image Synthesis (Seg2Face) 8.3 News (2023-02-15) GPEN-BFR-1024 and GPEN-BFR-2048 are now publicly available. Please download them via [ModelScope2]. (2023-02-15) We provide online demos via [ModelScope1] and [ModelScope2]. (2022-05-16) Add x1 sr model. Add --tile_size to avoid OOM. (2022-03-15) Add x4 sr model. Try --sr_scale. (2022-03-09) Add GPEN-BFR-2048 for selfies. I have to take it down due to commercial issues. Sorry about that. (2021-12-29) Add online demos  Hugging Face Spaces. Many thanks to CJWBW and AK391. (2021-12-16) Release a simplified training code of GPEN. It differs from our implementation in the paper, but could achieve comparable performance. We strongly recommend to change the degradation model. (2021-12-09) Add face parsing to better paste restored faces back. (2021-12-09) GPEN can run on CPU now by simply discarding --use_cuda. (2021-12-01) GPEN can now work on a Windows machine without compiling cuda codes. Please check it out. Thanks to Animadversio. Alternatively, you can try GPEN-Windows. Many thanks to Cioscos. (2021-10-22) GPEN can now work with SR methods. A SR model trained by myself is provided. Replace it with your own model if necessary. (2021-10-11) The Colab demo for GPEN is available now google colab logo. 8.4 下载模型 Download models from Modelscope Install modelscope: https://www.modelscope.cn/models/damo/cv_gpen_image-portrait-enhancement-hires/summary https://www.modelscope.cn/models/damo/cv_gpen_image-portrait-enhancement/summary https://www.modelscope.cn/models/damo/cv_gpen_image-portrait-enhancement-hires/summary pip install modelscope[cv] -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html Run the following codes: import cv2 from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from modelscope.outputs import OutputKeys portrait_enhancement pipeline(Tasks.image_portrait_enhancement, modeldamo/cv_gpen_image-portrait-enhancement-hires) result portrait_enhancement(https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/marilyn_monroe_4.jpg) cv2.imwrite(result.png, result[OutputKeys.OUTPUT_IMG]) It will automatically download the GPEN models. You can find the model in the local path ~/.cache/modelscope/hub/damo. Please note pytorch_model.pt, pytorch_model-2048.pt are respectively the 1024 and 2048 versions. 8.5 依赖项Usage python: https://img.shields.io/badge/python-v3.7.4-green.svg?styleplastic pytorch: https://img.shields.io/badge/pytorch-v1.7.0-green.svg?styleplastic cuda: https://img.shields.io/badge/cuda-v10.2.89-green.svg?styleplastic driver: https://img.shields.io/badge/driver-v460.73.01-green.svg?styleplastic gcc: https://img.shields.io/badge/gcc-v7.5.0-green.svg?styleplastic 8.5.1 Clone this repository: git clone https://github.com/yangxy/GPEN.git cd GPEN 8.5.2 Download RetinaFace model and our pre-trained model (not our best model due to commercial issues) and put them into weights/. RetinaFace-R50 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/RetinaFace-R50.pth ParseNet-latest https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/ParseNet-latest.pth model_ir_se50 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/model_ir_se50.pth GPEN-BFR-512 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-512.pth GPEN-BFR-512-D https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-512-D.pth GPEN-BFR-256 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-256.pth GPEN-BFR-256-D https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-256-D.pth GPEN-Colorization-1024 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-Colorization-1024.pth GPEN-Inpainting-1024 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-Inpainting-1024.pth GPEN-Seg2face-512 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-Seg2face-512.pth realesrnet_x1 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/realesrnet_x1.pth realesrnet_x2 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/realesrnet_x2.pth realesrnet_x4 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/realesrnet_x4.pth 8.5.3 Restore face images: python demo.py --task FaceEnhancement --model GPEN-BFR-512 --in_size 512 --channel_multiplier 2 --narrow 1 --use_sr --sr_scale 4 --use_cuda --save_face --indir examples/imgs --outdir examples/outs-bfr Colorize faces: python demo.py --task FaceColorization --model GPEN-Colorization-1024 --in_size 1024 --use_cuda --indir examples/grays --outdir examples/outs-colorization Complete faces: python demo.py --task FaceInpainting --model GPEN-Inpainting-1024 --in_size 1024 --use_cuda --indir examples/ffhq-10 --outdir examples/outs-inpainting Synthesize faces: python demo.py --task Segmentation2Face --model GPEN-Seg2face-512 --in_size 512 --use_cuda --indir examples/segs --outdir examples/outs-seg2face Train GPEN for BFR with 4 GPUs: CUDA_VISIBLE_DEVICES0,1,2,3 python -m torch.distributed.launch --nproc_per_node4 --master_port4321 train_simple.py --size 1024 --channel_multiplier 2 --narrow 1 --ckpt weights --sample results --batch 2 --path your_path_of_cropedaligned_hq_faces (e.g., FFHQ) When testing your own model, set --key g_ema. Please check out run.sh for more details. 8.6 Main idea 8.7 Citation If our work is useful for your research, please consider citing: inproceedings{Yang2021GPEN,     title{GAN Prior Embedded Network for Blind Face Restoration in the Wild},     author{Tao Yang, Peiran Ren, Xuansong Xie, and Lei Zhang},     booktitle{IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},     year{2021} } 8.8 License © Alibaba, 2021. For academic and non-commercial use only. 8.9 Acknowledgments We borrow some codes from Pytorch_Retinaface, stylegan2-pytorch, Real-ESRGAN, and GFPGAN. 8.10 Contact If you have any questions or suggestions about this paper, feel free to reach me at yangtao9009gmail.com.
http://www.yutouwan.com/news/1352/

相关文章:

  • 广告设计公司名字大全seo专员工作累吗
  • html5 网站正在建设中外贸网站做开关的哪个好
  • 网站建设哪些网站可以音乐网站后台管理模板
  • 深圳宝安网站建设学习网免费如何创建网站平台
  • liunx做网站跳转成都网站开发公司哪家好
  • 快速模板建站工具百度发帖推广
  • 徐州网站平台男人做爽的免费网站
  • 网站建设岗位有哪些wordpress是pass么
  • 网站开发生命周期模型百度域名提交收录网址
  • 网站服务器提供商做网页大概需要多少钱
  • 简述一个商务网站建设的步骤网页设计基础实训目的
  • 南联网站建设哪家好小游戏推广联盟
  • 电子商务网站怎么做seo设计说明书包括哪些内容
  • 盐城网站建设0515icp大型购物网站建设方案
  • 网站怎么做现场直播视频哈尔滨网站制作公司有哪些
  • 公司名被注册网站wordpress使用文档
  • 广东建站便利的微网站建设
  • 网站建设公司怎么发展新客户wordpress 页面 列表
  • 做电影网站用什么源码seo文章是什么
  • 网站开发求职信网站每年续费费用
  • 网站建设女装规划书注册个网站要多少钱
  • 营销型企业网站建设应遵守的原则海南省住房公积金管理局咨询电话
  • 网站开发技术视频教程网络推广怎么收费
  • 广州旅游网站建设设计动漫设计难不难
  • 有关企业电子网站建设论文电商网站开发公司杭州
  • 数据库与网站建设网站页面的组成
  • 网站备案查询网站请问电商是做什么的
  • 可以跟关键词密度过高的网站交换友情链接吗做网站的网页设计用cdr吗
  • 淮北官方网站7一12岁手工
  • ae模板素材网站asp 网站 购物车