当前位置: 首页 > news >正文

国际知名平面设计网站医美的网站主页怎么做

国际知名平面设计网站,医美的网站主页怎么做,排名前50名免费的网站,手机端怎样做网站建设0 前言 #x1f525; 优质竞赛项目系列#xff0c;今天要分享的是 #x1f6a9; 深度学习 机器视觉 车位识别车道线检测 该项目较为新颖#xff0c;适合作为竞赛课题方向#xff0c;学长非常推荐#xff01; #x1f947;学长这里给一个题目综合评分(每项满分5分) …0 前言 优质竞赛项目系列今天要分享的是 深度学习 机器视觉 车位识别车道线检测 该项目较为新颖适合作为竞赛课题方向学长非常推荐 学长这里给一个题目综合评分(每项满分5分) 难度系数3分工作量3分创新点4分 更多资料, 项目分享 https://gitee.com/dancheng-senior/postgraduate 简介 你是不是经常在停车场周围转来转去寻找停车位。如果你的车辆能准确地告诉你最近的停车位在哪里那是不是很爽事实证明基于深度学习和OpenCV解决这个问题相对容易只需获取停车场的实时视频即可。 该项目可推荐用于竞赛项目 检测效果 废话不多说 先上效果图 注意车辆移动后空车位被标记上 车辆移动到其他车位 实现方式 整体思路 这个流程的第一步就是检测一帧视频中所有可能的停车位。显然在我们能够检测哪个是没有被占用的停车位之前我们需要知道图像中的哪些部分是停车位。 第二步就是检测每帧视频中的所有车辆。这样我们可以逐帧跟踪每辆车的运动。 第三步就是确定哪些车位目前是被占用的哪些没有。这需要结合前两步的结果。 最后一步就是出现新车位时通知我。这需要基于视频中两帧之间车辆位置的变化。 这里的每一步我们都可以使用多种技术用很多种方式实现。构建这个流程并没有唯一正确或者错误的方式但不同的方法会有优劣之分。 使用要使用到两个视觉识别技术 识别空车位停车线识别车辆 检测空车位 车位探测系统的第一步是识别停车位。有一些技巧可以做到这一点。例如通过在一个地点定位停车线来识别停车位。这可以使用OpenCV提供的边缘检测器来完成。但是如果没有停车线呢 我们可以使用的另一种方法是假设长时间不移动的汽车停在停车位上。换句话说有效的停车位就是那些停着不动的车的地方。但是这似乎也不可靠。它可能会导致假阳性和真阴性。 那么当自动化系统看起来不可靠时我们应该怎么做呢?我们可以手动操作。与基于空间的方法需要对每个不同的停车位进行标签和训练不同我们只需标记一次停车场边界和周围道路区域即可为新的停车位配置我们的系统。 在这里我们将从停车位的视频流中截取一帧并标记停车区域。Python库matplotlib 提供了称为PolygonSelector的功能。它提供了选择多边形区域的功能。 我制作了一个简单的python脚本来标记输入视频的初始帧之一上的多边形区域。它以视频路径作为参数并将选定多边形区域的坐标保存在pickle文件中作为输出。 ​ import os import numpy as np import cv2 import pickle import argparse import matplotlib.pyplot as plt from matplotlib.patches import Polygon from matplotlib.widgets import PolygonSelector from matplotlib.collections import PatchCollection from shapely.geometry import box from shapely.geometry import Polygon as shapely_polypoints [] prev_points [] patches [] total_points [] breaker Falseclass SelectFromCollection(object):def __init__(self, ax):self.canvas ax.figure.canvasself.poly PolygonSelector(ax, self.onselect)self.ind []def onselect(self, verts):global pointspoints vertsself.canvas.draw_idle()def disconnect(self):self.poly.disconnect_events()self.canvas.draw_idle()def break_loop(event):global breakerglobal globSelectglobal savePathif event.key b:globSelect.disconnect()if os.path.exists(savePath):os.remove(savePath)print(data saved in savePath file) with open(savePath, wb) as f:pickle.dump(total_points, f, protocolpickle.HIGHEST_PROTOCOL)exit()def onkeypress(event):global points, prev_points, total_pointsif event.key n: pts np.array(points, dtypenp.int32) if points ! prev_points and len(set(points)) 4:print(Points : str(pts))patches.append(Polygon(pts))total_points.append(pts)prev_points pointsif __name__ __main__:parser argparse.ArgumentParser()parser.add_argument(video_path, helpPath of video file)parser.add_argument(--out_file, helpName of the output file, defaultregions.p)args parser.parse_args()global globSelectglobal savePathsavePath args.out_file if args.out_file.endswith(.p) else args.out_file.pprint(\n Select a region in the figure by enclosing them within a quadrilateral.)print( Press the f key to go full screen.)print( Press the esc key to discard current quadrilateral.)print( Try holding the shift key to move all of the vertices.)print( Try holding the ctrl key to move a single vertex.)print( After marking a quadrilateral press n to save current quadrilateral and then press q to start marking a new quadrilateral)print( When you are done press b to Exit the program\n)video_capture cv2.VideoCapture(args.video_path)cnt0rgb_image Nonewhile video_capture.isOpened():success, frame video_capture.read()if not success:breakif cnt 5:rgb_image frame[:, :, ::-1]cnt 1video_capture.release()while True:fig, ax plt.subplots()image rgb_imageax.imshow(image)p PatchCollection(patches, alpha0.7)p.set_array(10*np.ones(len(patches)))ax.add_collection(p)globSelect SelectFromCollection(ax)bbox plt.connect(key_press_event, onkeypress)break_event plt.connect(key_press_event, break_loop)plt.show()globSelect.disconnect()(PS: 若代码出现bug可反馈博主 及时修改) 车辆识别 要检测视频中的汽车我使用Mask- RCNN。它是一个卷积神经网络对来自几个数据集包括COCO数据集的数百万个图像和视频进行了训练以检测各种对象及其边界。 Mask- RCNN建立在Faster-RCNN对象检测模型的基础上。 除了每个检测到的对象的类标签和边界框坐标外Mask RCNN还将返回图像中每个检测到的对象的像pixel-wise mask。这种pixel-wise masking称为“ 实例分割”。我们在计算机视觉领域所看到的一些最新进展包括自动驾驶汽车、机器人等都是由实例分割技术推动的。 M-RCNN将用于视频的每一帧它将返回一个字典其中包含边界框坐标、检测对象的masks、每个预测的置信度和检测对象的class_id。现在使用class_ids过滤掉汽车卡车和公共汽车的边界框。然后我们将在下一步中使用这些框来计算IoU。 由于Mask-RCNN比较复杂这里篇幅有限需要mask-RCNN的同学联系博主获取 下面仅展示效果 最后 更多资料, 项目分享 https://gitee.com/dancheng-senior/postgraduate
http://www.sadfv.cn/news/319622/

相关文章:

  • 国外的自建网站怎么做网站开发建设推荐
  • 做网站找哪家邢台生活网
  • 承德微网站开发seo推广员是做什么的
  • 网站建设上海网站建设邱杰wordpress
  • 上传的网站怎么打开使用iframe做网站
  • 九江做网站的公司哪里好深圳网站建设公司哪家
  • 作图网站都有哪些最好的网站建设用途
  • 产品外观造型设计优化网络推广外包
  • 宁海县城镇建设局网站wordpress主题 医疗
  • 网站pv uv是什么意思福建省建设工程造价站官方网站
  • 上网站 ftp国内有奖活动第一分享平台
  • 如何在网站建设远程教育门户网站建设信息化项目背景
  • 深圳全网营销推广平台宁波seo深度优化平台有哪些
  • 中国国家住房和城乡建设部网站首页ui网页界面设计素材
  • 高端网站建设开发微信网站 教程
  • 网站规划设计的一般流程注册网站能赚钱吗
  • 网站平台建设哪家公司好百度 网站改版了
  • 做视频怎样传到网站专业建设网站服务公司
  • 如何宣传网站平面设计培训素材
  • 苏州企业网站关键词优化机械加工小作坊如何接单
  • 可在哪些网站做链接php网站开发技术论文
  • 做游戏能赚钱的网站wordpress数据表前缀
  • 深圳十大网站建设网站设计制作哪个公司的好
  • 县级部门和乡镇不能建网站建设建筑工程网络计划图绘制软件
  • 聊天室网站模板i深圳网站建设
  • 南京建设行政主管部门网站民政局网站建设工作总结
  • 在线教育网站开发实例建设银行南通城区网站
  • 怎么看 网站开发语言网站建设要学多少课程
  • 做企业培训的网站公司简介网页
  • wordpress能做企业站吗六安商业网站建设费用