当前位置: 首页 > news >正文

网站xml地图建立网站坐等访问者发现

网站xml地图,建立网站坐等访问者发现,百度作文网站,网站案例欣赏基于MindSpore的llama微调在OpenI平台上运行 克隆预训练模型 克隆chatglm-6b代码仓#xff0c;下载分布式的模型文件 git lfs install git clone https://huggingface.co/openlm-research/open_llama_7b准备环境 安装Transformer pip install transformers执行转换脚本 …基于MindSpore的llama微调在OpenI平台上运行 克隆预训练模型 克隆chatglm-6b代码仓下载分布式的模型文件 git lfs install git clone https://huggingface.co/openlm-research/open_llama_7b准备环境 安装Transformer pip install transformers执行转换脚本 python mindformers/models/glm/convert_weight.py --pt_ckpt_path /home/ma-user/work/models/mindspore/pt_glm_6b.pth --ms_ckpt_path ../models/mindspore/ms_glm_6b.ckpt注意可能会遇到以下错误: 执行转换脚本得到转换后的输出文件ms_glm_6b.ckpt解决方法 export LD_PRELOAD$LD_PRELOAD:/home/ma-user/anaconda3/envs/MindSpore/lib/python3.7/site-packages/torch/lib/libgomp-d22c30c5.so.1 原理找到torch中的libgomp-d22c30c5.so.1 然后赋值给LD_PRELOAD环境变量这个报错好像只有ARM平台会有 微调训练集准备 微调方式lora 目前提供alpaca数据集的预处理脚本用于全参微调/lora微调任务。 数据集地址https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json alpaca数据集原始格式样例 # alpaca examples:{instruction: Describe a time when you had to make a difficult decision.,input: ,output: I had to make a difficult decision when I was working as a project manager at a construction company. I was in charge of a project that needed to be completed by a certain date in order to meet the client\u2019s expectations. However, due to unexpected delays, we were not able to meet the deadline and so I had to make a difficult decision. I decided to extend the deadline, but I had to stretch the team\u2019s resources even further and increase the budget. Although it was a risky decision, I ultimately decided to go ahead with it to ensure that the project was completed on time and that the client\u2019s expectations were met. The project was eventually successfully completed and this was seen as a testament to my leadership and decision-making abilities.},{instruction: Identify the odd one out.,input: Twitter, Instagram, Telegram,output: Telegram},执行alpaca_converter.py使用fastchat工具添加prompts模板将原始数据集转换为多轮对话格式 # 脚本路径tools/dataset_preprocess/llama/alpaca_converter.py # 执行转换脚本 python alpaca_converter.py \ --data_path /home/ma-user/work/data/alpaca_data.json \ --output_path /home/ma-user/work/data/alpaca-data-conversation.json参数说明 # 参数说明 data_path: 存放alpaca数据的路径 output_path: 输出转换后对话格式的数据路径转换后的样例: {id: 1,conversations: [{from: human,value: Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\nGive three tips for staying healthy.\n\n### Response:},{from: gpt,value: 1.Eat a balanced diet and make sure to include plenty of fruits and vegetables. \n2. Exercise regularly to keep your body active and strong. \n3. Get enough sleep and maintain a consistent sleep schedule.}]},执行llama_preprocess.py进行数据预处理、Mindrecord数据生成将带有prompt模板的数据转换为mindrecord格式。 安装依赖: pip install fschat[model_worker,webui]执行脚本 # 脚本路径tools/dataset_preprocess/llama/llama_preprocess.py # 由于此工具依赖fschat工具包解析prompt模板请提前安装fschat 0.2.13 python 3.9 python llama_preprocess.py \ --dataset_type qa \ --input_glob /home/ma-user/work/data/alpaca-data-conversation.json \ --model_file /home/ma-user/work/models/open_llama_7b/tokenizer.model \ --seq_length 2048 \ --output_file /home/ma-user/work/models/alpaca-fastchat2048.mindrecordlora微调 目前lora微调适配了llama_7b模型并给出了默认配置文件config/llama/run_llama_7b_lora.yaml step 1. 修改配置文件参考全参微调修改训练数据集路径与预训练权重路径。step 2. 启动lora微调任务。 注llama_7b_lora模型支持单卡启动需将配置文件中的use_parallel参数置为False。 脚本启动 python run_mindformer.py --config./configs/llama/run_llama_7b_lora.yaml --use_parallelFalse --run_modefinetunerun_llma_7b_lora.yaml seed: 0 output_dir: ./output # 当前不支持自定义修改请勿修改该默认值 load_checkpoint: /home/ma-user/work/models/mindspore/open_llama_7b_ms.ckpt src_strategy_path_or_dir: auto_trans_ckpt: False # If true, auto transform load_checkpoint to load in distributed model only_save_strategy: False resume_training: False run_mode: finetune# trainer config trainer:type: CausalLanguageModelingTrainermodel_name: llama_7b_lora# runner config runner_config:epochs: 1batch_size: 2sink_mode: Truesink_size: 2# optimizer optimizer:type: FP32StateAdamWeightDecaybeta1: 0.9beta2: 0.95eps: 1.e-8learning_rate: 1.e-4# lr sechdule lr_schedule:type: CosineWithWarmUpLRlearning_rate: 1.e-4warmup_ratio: 0.03total_steps: -1 # -1 means it will load the total steps of the dataset# dataset train_dataset: train_datasetdata_loader:type: MindDatasetdataset_dir: /home/ma-user/work/models/alpaca-fastchat2048.mindrecordshuffle: Trueinput_columns: [input_ids, labels] # input_ids, labels , labels are used in instruction finetune.num_parallel_workers: 8python_multiprocessing: Falsedrop_remainder: Truebatch_size: 2repeat: 1numa_enable: Falseprefetch_size: 1train_dataset_task:type: CausalLanguageModelDatasetdataset_config: *train_dataset # if True, do evaluate during the training process. if false, do nothing. # note that the task trainer should support _evaluate_in_training function. do_eval: False# eval dataset eval_dataset: eval_datasetdata_loader:type: MindDatasetdataset_dir: /home/ma-user/work/models/alpaca-fastchat2048.mindrecordshuffle: Falseinput_columns: [input_ids, labels]num_parallel_workers: 8python_multiprocessing: Falsedrop_remainder: Falserepeat: 1numa_enable: Falseprefetch_size: 1 eval_dataset_task:type: CausalLanguageModelDatasetdataset_config: *eval_datasetuse_parallel: False # parallel context config parallel:parallel_mode: 1 # 0-data parallel, 1-semi-auto parallel, 2-auto parallel, 3-hybrid parallelgradients_mean: Falseenable_alltoall: Falsefull_batch: Truesearch_mode: sharding_propagationenable_parallel_optimizer: Falsestrategy_ckpt_save_file: ./ckpt_strategy.ckptparallel_optimizer_config:gradient_accumulation_shard: Falseparallel_optimizer_threshold: 64 # default parallel of device num 8 910A parallel_config:data_parallel: 8model_parallel: 1pipeline_stage: 1use_seq_parallel: Falseoptimizer_shard: Falsemicro_batch_num: 1vocab_emb_dp: Truegradient_aggregation_group: 4 # when model parallel is greater than 1, we can set micro_batch_interleave_num2, that may accelerate the train process. micro_batch_interleave_num: 1# recompute config recompute_config:recompute: Trueselect_recompute: Falseparallel_optimizer_comm_recompute: Falsemp_comm_recompute: Truerecompute_slice_activation: True# callbacks callbacks:- type: MFLossMonitor- type: CheckpointMointorprefix: llama_7b_lorasave_checkpoint_steps: 20000integrated_save: Falseasync_save: False- type: ObsMonitor# mindspore context init config context:mode: 0 #0--Graph Mode; 1--Pynative Modedevice_target: Ascendenable_graph_kernel: Falsegraph_kernel_flags: --disable_expand_opsSoftmax,Dropout --enable_parallel_fusiontrue --reduce_fuse_depth8 --enable_auto_tensor_inplacetruemax_call_depth: 10000max_device_memory: 31GBsave_graphs: Falsesave_graphs_path: ./graphdevice_id: 0# model config model:model_config:type: LlamaConfigbatch_size: 1 # add for increase predictseq_length: 2048hidden_size: 4096num_layers: 32num_heads: 32vocab_size: 32000multiple_of: 256rms_norm_eps: 1.0e-6bos_token_id: 1eos_token_id: 2pad_token_id: 0ignore_token_id: -100compute_dtype: float16layernorm_compute_dtype: float32softmax_compute_dtype: float16rotary_dtype: float16param_init_type: float16use_past: Falsepretrain_seqlen: 2048 # seqlen of the pretrain checkpoint: 2048 for llama and 4096 for llama2extend_method: None # support None, PI, NTKcompute_in_2d: Falseuse_flash_attention: Falseoffset: 0use_past_shard: Falsecheckpoint_name_or_path: llama_7b_lorarepetition_penalty: 1max_decode_length: 512top_k: 3top_p: 1do_sample: Falsepet_config:pet_type: lora# configuration of lorain_channels: 4096out_channels: 4096lora_rank: 16lora_alpha: 16lora_dropout: 0.05arch:type: LlamaForCausalLMWithLoraprocessor:return_tensors: mstokenizer:unk_token: unkbos_token: seos_token: /spad_token: padtype: LlamaTokenizer# metric metric:type: PerplexityMetric# wrapper cell config runner_wrapper:type: MFTrainOneStepCellscale_sense:type: DynamicLossScaleUpdateCellloss_scale_value: 4294967296scale_factor: 2scale_window: 1000use_clip_grad: Trueeval_callbacks:- type: ObsMonitorauto_tune: False filepath_prefix: ./autotune autotune_per_step: 10profile: False profile_start_step: 1 profile_stop_step: 10 init_start_profile: False profile_communication: False profile_memory: True layer_scale: False layer_decay: 0.65 lr_scale_factor: 256# cfts init config remote_save_url: Please input obs url on AICC platform.
http://www.yutouwan.com/news/174849/

相关文章:

  • 网站建站那个好wordpress登录页面图标修改
  • 单页网站与传统网站的区别建设网站 深圳
  • 门户网站建设背景网站开发 手机 电脑
  • 汽车展示网站活动推广方式
  • 网站建设技术可行性分析梁头网站建设
  • 北京制作手机网站读取别人网站代码自己做
  • 成品网站 售卖商城平台推广方案
  • 仿腾讯网站源码网站建设宣传语怎么写
  • 音乐建设网站沈阳装修公司网站建设
  • 湖北网站seo策划昌吉北京网站建设
  • 忻府网站建设排名做网站开发有前途吗
  • 网站后台生成文章很慢上海公司注册官网
  • 用asp做网站需要准备什么机械设备上海网站建设
  • 做网站的软件word免费做网站怎么做网站
  • 网站刷流量对网站有影响吗教学ppt模板免费下载完整版
  • 保定比较好的网站建设公司计算机网络技术出来干什么
  • 东莞高端网站建设多少钱凡科网站备案
  • 有哪些做推送的网站网络运维主要做什么
  • 宿迁做网站吴江建网站
  • 佛山新网站制作咨询免费做网站怎么做网站链接
  • 万户网络技术有限公司网站优化过度被k
  • 专业制作外贸网站的公司深圳网站建设公司是
  • 北京网站托管wordpress+万能搜索页
  • 干网站建设销售怎么样个人网站作品下载
  • 高端网站模板哈尔滨制作企业网站
  • 网站制作学费多少钱网站优化seo教程
  • 怎么在网站注册账号wap网页设计模板
  • 做网站前需要准备什么软件架设仿冒网站挂马
  • 购物网站排名2018wordpress怎么装插件
  • 个体户做盈利网站成都青羊建设厅官方网站