当前位置: 首页 > news >正文

门户网站重要性网络营销的特点决定了它不能满足

门户网站重要性,网络营销的特点决定了它不能满足,wordpress 特色 外链,杭州市做网站的公司文章目录 1. 导入依赖库2. 加载数据集3. 准备数据集4. 将Pandas数据集转换为TensorFlow数据集5. 使用默认参数训练模型6. 使用改进的默认参数训练模型7. 进行预测8. 使用超参数调优训练模型9. 创建一个集成模型 TensorFlow决策森林在表格数据上表现较好。本笔记将带您完成使用T… 文章目录 1. 导入依赖库2. 加载数据集3. 准备数据集4. 将Pandas数据集转换为TensorFlow数据集5. 使用默认参数训练模型6. 使用改进的默认参数训练模型7. 进行预测8. 使用超参数调优训练模型9. 创建一个集成模型 TensorFlow决策森林在表格数据上表现较好。本笔记将带您完成使用TensorFlow决策森林训练基线梯度提升树模型并在泰坦尼克号竞赛中提交的步骤。 本笔记展示了 如何进行一些基本的预处理。例如将对乘客姓名进行标记化处理将车票名称分割成几个部分。如何使用默认参数训练梯度提升树(GBT)。如何使用改进的默认参数训练GBT。如何调整GBTs的参数。如何训练和集成多个GBTs。 1. 导入依赖库 # 导入所需的库 import numpy as np import pandas as pd import osimport tensorflow as tf import tensorflow_decision_forests as tfdf# 打印 TensorFlow Decision Forests 的版本号 print(fFound TF-DF {tfdf.__version__})Found TF-DF 1.2.02. 加载数据集 # 导入pandas库用于数据处理和分析 import pandas as pd# 读取训练数据集和测试数据集 train_df pd.read_csv(/kaggle/input/titanic/train.csv) serving_df pd.read_csv(/kaggle/input/titanic/test.csv)# 显示训练数据集的前10行数据 train_df.head(10)PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S4503Allen, Mr. William Henrymale35.0003734508.0500NaNS5603Moran, Mr. JamesmaleNaN003308778.4583NaNQ6701McCarthy, Mr. Timothy Jmale54.0001746351.8625E46S7803Palsson, Master. Gosta Leonardmale2.03134990921.0750NaNS8913Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)female27.00234774211.1333NaNS91012Nasser, Mrs. Nicholas (Adele Achem)female14.01023773630.0708NaNC 3. 准备数据集 我们将对数据集进行以下转换。 对名称进行分词。例如“Braund, Mr. Owen Harris” 将变成 [“Braund”, “Mr.”, “Owen”, “Harris”]。提取车票中的任何前缀。例如车票 “STON/O2. 3101282” 将变成 “STON/O2.” 和 3101282。 def preprocess(df):# 复制输入的DataFrame以免修改原始数据df df.copy()# 定义一个函数用于规范化姓名def normalize_name(x):# 将姓名中的特殊字符去除并用空格分隔单词return .join([v.strip(,()[].\) for v in x.split( )])# 定义一个函数用于提取车票号码的最后一部分def ticket_number(x):# 将车票号码按空格分隔并返回最后一个部分return x.split( )[-1]# 定义一个函数用于提取车票项目def ticket_item(x):# 将车票号码按空格分隔items x.split( )# 如果车票号码只有一个部分则返回NONEif len(items) 1:return NONE# 否则将除最后一个部分外的其他部分用下划线连接起来return _.join(items[0:-1])# 对姓名列应用规范化函数df[Name] df[Name].apply(normalize_name)# 对车票列应用提取车票号码函数df[Ticket_number] df[Ticket].apply(ticket_number)# 对车票列应用提取车票项目函数df[Ticket_item] df[Ticket].apply(ticket_item) return df# 对训练数据集进行预处理 preprocessed_train_df preprocess(train_df) # 对服务数据集进行预处理 preprocessed_serving_df preprocess(serving_df)# 打印预处理后的训练数据集的前5行 preprocessed_train_df.head(5) PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarkedTicket_numberTicket_item0103Braund Mr Owen Harrismale22.010A/5 211717.2500NaNS21171A/51211Cumings Mrs John Bradley Florence Briggs Thayerfemale38.010PC 1759971.2833C85C17599PC2313Heikkinen Miss Lainafemale26.000STON/O2. 31012827.9250NaNS3101282STON/O2.3411Futrelle Mrs Jacques Heath Lily May Peelfemale35.01011380353.1000C123S113803NONE4503Allen Mr William Henrymale35.0003734508.0500NaNS373450NONE 让我们列出模型的输入特征列表。值得注意的是我们不想在“PassengerId”和“Ticket”特征上训练我们的模型。 # 获取预处理后的训练数据集的所有列名并将其存储在input_features列表中 input_features list(preprocessed_train_df.columns)# 从input_features列表中移除Ticket列 input_features.remove(Ticket)# 从input_features列表中移除PassengerId列 input_features.remove(PassengerId)# 从input_features列表中移除Survived列 input_features.remove(Survived)# 打印输出input_features列表显示剩余的特征列 print(fInput features: {input_features})Input features: [Pclass, Name, Sex, Age, SibSp, Parch, Fare, Cabin, Embarked, Ticket_number, Ticket_item]4. 将Pandas数据集转换为TensorFlow数据集 def tokenize_names(features, labelsNone):将姓名分割为标记。TF-DF可以原生地处理文本标记。# 使用tf.strings.split函数将姓名分割为标记并将结果存储在features[Name]中features[Name] tf.strings.split(features[Name])return features, labels# 将预处理后的训练数据集转换为TF数据集并指定标签列为Survived然后应用tokenize_names函数进行标记化处理 train_ds tfdf.keras.pd_dataframe_to_tf_dataset(preprocessed_train_df,labelSurvived).map(tokenize_names)# 将预处理后的服务数据集转换为TF数据集并应用tokenize_names函数进行标记化处理 serving_ds tfdf.keras.pd_dataframe_to_tf_dataset(preprocessed_serving_df).map(tokenize_names)5. 使用默认参数训练模型 首先我们使用默认参数训练了一个GradientBoostedTreesModel模型。 # 创建一个梯度提升树模型 model tfdf.keras.GradientBoostedTreesModel(verbose0, # 设置日志输出级别为0几乎没有日志输出features[tfdf.keras.FeatureUsage(namen) for n in input_features], # 设置模型使用的特征列表exclude_non_specified_featuresTrue, # 只使用在特征列表中指定的特征random_seed1234, # 设置随机种子 )# 使用训练数据集训练模型 model.fit(train_ds)# 获取模型的自我评估结果 self_evaluation model.make_inspector().evaluation()# 输出模型的准确率和损失值 print(fAccuracy: {self_evaluation.accuracy} Loss:{self_evaluation.loss})[INFO 2023-05-18T10:31:05.46977690400:00 kernel.cc:1214] Loading model from path /tmp/tmpxl2c60xw/model/ with prefix f38ff16f536e4497 [INFO 2023-05-18T10:31:05.4795451900:00 abstract_model.cc:1311] Engine GradientBoostedTreesQuickScorerExtended built [INFO 2023-05-18T10:31:05.47986545700:00 kernel.cc:1046] Use fast generic engineWARNING: AutoGraph could not transform function simple_ml_inference_op_with_handle at 0x78705a4f94d0 and will run it as-is. Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, export AUTOGRAPH_VERBOSITY10) and attach the full output. Cause: could not get source code To silence this warning, decorate the function with tf.autograph.experimental.do_not_convert Accuracy: 0.8260869383811951 Loss:0.86089426279067996. 使用改进的默认参数训练模型 现在您将在创建GBT模型时使用一些特定的参数 # 创建模型model tfdf.keras.GradientBoostedTreesModel(verbose0, # 输出日志较少features[tfdf.keras.FeatureUsage(namen) for n in input_features], # 使用指定的特征exclude_non_specified_featuresTrue, # 只使用features中指定的特征min_examples1, # 每个节点最少样本数categorical_algorithmRANDOM, # 类别特征处理算法shrinkage0.05, # 学习率split_axisSPARSE_OBLIQUE, # 分裂轴sparse_oblique_normalizationMIN_MAX, # 稀疏斜轴归一化方法sparse_oblique_num_projections_exponent2.0, # 稀疏斜轴投影数指数num_trees2000, # 树的数量random_seed1234, # 随机种子 )# 训练模型 model.fit(train_ds)# 模型评估 self_evaluation model.make_inspector().evaluation() print(fAccuracy: {self_evaluation.accuracy} Loss:{self_evaluation.loss})[INFO 2023-05-18T10:31:10.21781024700:00 kernel.cc:1214] Loading model from path /tmp/tmp73d7qv4h/model/ with prefix ce08288098554ec5 [INFO 2023-05-18T10:31:10.22798217800:00 decision_forest.cc:661] Model loaded with 33 root(s), 1823 node(s), and 10 input feature(s). [INFO 2023-05-18T10:31:10.22826525200:00 kernel.cc:1046] Use fast generic engineAccuracy: 0.760869562625885 Loss:1.0154211521148682让我们来看一下模型你还可以注意到模型找出的变量重要性的信息。 # 打印模型的概述信息 model.summary()Model: gradient_boosted_trees_model_1 _________________________________________________________________Layer (type) Output Shape Param # Total params: 1 Trainable params: 0 Non-trainable params: 1 _________________________________________________________________ Type: GRADIENT_BOOSTED_TREES Task: CLASSIFICATION Label: __LABELInput Features (11):AgeCabinEmbarkedFareNameParchPclassSexSibSpTicket_itemTicket_numberNo weightsVariable Importance: INV_MEAN_MIN_DEPTH:1. Sex 0.576632 ################2. Age 0.364297 #######3. Fare 0.278839 ####4. Name 0.208548 #5. Ticket_number 0.180792 6. Pclass 0.176962 7. Parch 0.176659 8. Ticket_item 0.175540 9. Embarked 0.172339 10. SibSp 0.170442 Variable Importance: NUM_AS_ROOT:1. Sex 28.000000 ################2. Name 5.000000 Variable Importance: NUM_NODES:1. Age 406.000000 ################2. Fare 290.000000 ###########3. Name 44.000000 #4. Ticket_item 42.000000 #5. Sex 31.000000 #6. Parch 28.000000 7. Ticket_number 22.000000 8. Pclass 15.000000 9. Embarked 12.000000 10. SibSp 5.000000 Variable Importance: SUM_SCORE:1. Sex 460.497828 ################2. Age 355.963333 ############3. Fare 292.870316 ##########4. Name 108.548952 ###5. Pclass 28.132254 6. Ticket_item 23.818676 7. Ticket_number 23.772288 8. Parch 19.303155 9. Embarked 8.155722 10. SibSp 0.015225 Loss: BINOMIAL_LOG_LIKELIHOOD Validation loss value: 1.01542 Number of trees per iteration: 1 Node format: NOT_SET Number of trees: 33 Total number of nodes: 1823Number of nodes by tree: Count: 33 Average: 55.2424 StdDev: 5.13473 Min: 39 Max: 63 Ignored: 0 ---------------------------------------------- [ 39, 40) 1 3.03% 3.03% # [ 40, 41) 0 0.00% 3.03% [ 41, 42) 0 0.00% 3.03% [ 42, 44) 0 0.00% 3.03% [ 44, 45) 0 0.00% 3.03% [ 45, 46) 0 0.00% 3.03% [ 46, 47) 0 0.00% 3.03% [ 47, 49) 2 6.06% 9.09% ### [ 49, 50) 2 6.06% 15.15% ### [ 50, 51) 0 0.00% 15.15% [ 51, 52) 2 6.06% 21.21% ### [ 52, 54) 5 15.15% 36.36% ####### [ 54, 55) 0 0.00% 36.36% [ 55, 56) 5 15.15% 51.52% ####### [ 56, 57) 0 0.00% 51.52% [ 57, 59) 4 12.12% 63.64% ###### [ 59, 60) 7 21.21% 84.85% ########## [ 60, 61) 0 0.00% 84.85% [ 61, 62) 3 9.09% 93.94% #### [ 62, 63] 2 6.06% 100.00% ###Depth by leafs: Count: 928 Average: 4.8847 StdDev: 0.380934 Min: 2 Max: 5 Ignored: 0 ---------------------------------------------- [ 2, 3) 1 0.11% 0.11% [ 3, 4) 17 1.83% 1.94% [ 4, 5) 70 7.54% 9.48% # [ 5, 5] 840 90.52% 100.00% ##########Number of training obs by leaf: Count: 928 Average: 28.4127 StdDev: 70.8313 Min: 1 Max: 438 Ignored: 0 ---------------------------------------------- [ 1, 22) 731 78.77% 78.77% ########## [ 22, 44) 74 7.97% 86.75% # [ 44, 66) 37 3.99% 90.73% # [ 66, 88) 3 0.32% 91.06% [ 88, 110) 9 0.97% 92.03% [ 110, 132) 8 0.86% 92.89% [ 132, 154) 18 1.94% 94.83% [ 154, 176) 8 0.86% 95.69% [ 176, 198) 6 0.65% 96.34% [ 198, 220) 2 0.22% 96.55% [ 220, 241) 2 0.22% 96.77% [ 241, 263) 1 0.11% 96.88% [ 263, 285) 2 0.22% 97.09% [ 285, 307) 5 0.54% 97.63% [ 307, 329) 1 0.11% 97.74% [ 329, 351) 2 0.22% 97.95% [ 351, 373) 6 0.65% 98.60% [ 373, 395) 6 0.65% 99.25% [ 395, 417) 2 0.22% 99.46% [ 417, 438] 5 0.54% 100.00%Attribute in nodes:406 : Age [NUMERICAL]290 : Fare [NUMERICAL]44 : Name [CATEGORICAL_SET]42 : Ticket_item [CATEGORICAL]31 : Sex [CATEGORICAL]28 : Parch [NUMERICAL]22 : Ticket_number [CATEGORICAL]15 : Pclass [NUMERICAL]12 : Embarked [CATEGORICAL]5 : SibSp [NUMERICAL]Attribute in nodes with depth 0:28 : Sex [CATEGORICAL]5 : Name [CATEGORICAL_SET]Attribute in nodes with depth 1:39 : Age [NUMERICAL]28 : Sex [CATEGORICAL]21 : Fare [NUMERICAL]5 : Name [CATEGORICAL_SET]3 : Pclass [NUMERICAL]2 : Ticket_number [CATEGORICAL]1 : Parch [NUMERICAL]Attribute in nodes with depth 2:102 : Age [NUMERICAL]65 : Fare [NUMERICAL]28 : Sex [CATEGORICAL]15 : Name [CATEGORICAL_SET]7 : Ticket_number [CATEGORICAL]5 : Pclass [NUMERICAL]4 : Parch [NUMERICAL]2 : Ticket_item [CATEGORICAL]2 : Embarked [CATEGORICAL]Attribute in nodes with depth 3:206 : Age [NUMERICAL]156 : Fare [NUMERICAL]33 : Name [CATEGORICAL_SET]29 : Sex [CATEGORICAL]19 : Ticket_number [CATEGORICAL]11 : Ticket_item [CATEGORICAL]11 : Parch [NUMERICAL]7 : Pclass [NUMERICAL]3 : Embarked [CATEGORICAL]Attribute in nodes with depth 5:406 : Age [NUMERICAL]290 : Fare [NUMERICAL]44 : Name [CATEGORICAL_SET]42 : Ticket_item [CATEGORICAL]31 : Sex [CATEGORICAL]28 : Parch [NUMERICAL]22 : Ticket_number [CATEGORICAL]15 : Pclass [NUMERICAL]12 : Embarked [CATEGORICAL]5 : SibSp [NUMERICAL]Condition type in nodes:744 : ObliqueCondition122 : ContainsBitmapCondition29 : ContainsCondition Condition type in nodes with depth 0:31 : ContainsBitmapCondition2 : ContainsCondition Condition type in nodes with depth 1:64 : ObliqueCondition33 : ContainsBitmapCondition2 : ContainsCondition Condition type in nodes with depth 2:176 : ObliqueCondition51 : ContainsBitmapCondition3 : ContainsCondition Condition type in nodes with depth 3:380 : ObliqueCondition77 : ContainsBitmapCondition18 : ContainsCondition Condition type in nodes with depth 5:744 : ObliqueCondition122 : ContainsBitmapCondition29 : ContainsConditionTraining logs: Number of iteration to final model: 33Iter:1 train-loss:1.266350 valid-loss:1.360049 train-accuracy:0.624531 valid-accuracy:0.543478Iter:2 train-loss:1.213702 valid-loss:1.321897 train-accuracy:0.624531 valid-accuracy:0.543478Iter:3 train-loss:1.165783 valid-loss:1.286817 train-accuracy:0.624531 valid-accuracy:0.543478Iter:4 train-loss:1.122469 valid-loss:1.256133 train-accuracy:0.624531 valid-accuracy:0.543478Iter:5 train-loss:1.081461 valid-loss:1.229342 train-accuracy:0.808511 valid-accuracy:0.771739Iter:6 train-loss:1.045305 valid-loss:1.204601 train-accuracy:0.826033 valid-accuracy:0.728261Iter:16 train-loss:0.794952 valid-loss:1.058568 train-accuracy:0.914894 valid-accuracy:0.771739Iter:26 train-loss:0.646146 valid-loss:1.021539 train-accuracy:0.926158 valid-accuracy:0.793478Iter:36 train-loss:0.558627 valid-loss:1.023663 train-accuracy:0.929912 valid-accuracy:0.771739Iter:46 train-loss:0.493899 valid-loss:1.025164 train-accuracy:0.931164 valid-accuracy:0.760870Iter:56 train-loss:0.451528 valid-loss:1.032880 train-accuracy:0.938673 valid-accuracy:0.7717397. 进行预测 # 定义函数prediction_to_kaggle_format将模型预测结果转换为Kaggle格式 # 参数model模型对象 # 参数threshold阈值默认为0.5 def prediction_to_kaggle_format(model, threshold0.5):# 使用模型对serving_ds进行预测得到生存概率proba_survive model.predict(serving_ds, verbose0)[:,0]# 创建一个DataFrame包含PassengerId和Survived两列# PassengerId列取自serving_df的PassengerId列# Survived列根据生存概率是否大于等于阈值进行转换为0或1return pd.DataFrame({PassengerId: serving_df[PassengerId],Survived: (proba_survive threshold).astype(int)})# 定义函数make_submission将Kaggle预测结果生成提交文件 # 参数kaggle_predictionsKaggle预测结果的DataFrame def make_submission(kaggle_predictions):# 设置提交文件的路径为/kaggle/working/submission.csvpath/kaggle/working/submission.csv# 将kaggle_predictions保存为CSV文件不包含索引列kaggle_predictions.to_csv(path, indexFalse)# 打印提交文件导出的路径print(fSubmission exported to {path})# 调用prediction_to_kaggle_format函数将模型预测结果转换为Kaggle格式 # 将结果赋值给kaggle_predictions变量 kaggle_predictions prediction_to_kaggle_format(model)# 调用make_submission函数将Kaggle预测结果生成提交文件 # 参数为kaggle_predictions make_submission(kaggle_predictions)# 使用Linux命令!head查看提交文件的前几行 !head /kaggle/working/submission.csvSubmission exported to /kaggle/working/submission.csv PassengerId,Survived 892,0 893,0 894,0 895,0 896,0 897,0 898,0 899,0 900,18. 使用超参数调优训练模型 通过指定模型的调优构造函数参数来启用超参数调优。调优对象包含调优器的所有配置搜索空间、优化器、试验和目标。 # 创建一个随机搜索调谐器对象设置试验次数为1000次 tuner tfdf.tuner.RandomSearch(num_trials1000)# 设置参数min_examples的搜索空间为[2, 5, 7, 10] tuner.choice(min_examples, [2, 5, 7, 10])# 设置参数categorical_algorithm的搜索空间为[CART, RANDOM] tuner.choice(categorical_algorithm, [CART, RANDOM])# 创建一个局部搜索空间对象设置参数growing_strategy的搜索空间为[LOCAL] local_search_space tuner.choice(growing_strategy, [LOCAL])# 在局部搜索空间对象中设置参数max_depth的搜索空间为[3, 4, 5, 6, 8] local_search_space.choice(max_depth, [3, 4, 5, 6, 8])# 创建一个全局搜索空间对象设置参数growing_strategy的搜索空间为[BEST_FIRST_GLOBAL]并将其与之前的局部搜索空间对象合并 global_search_space tuner.choice(growing_strategy, [BEST_FIRST_GLOBAL], mergeTrue)# 在全局搜索空间对象中设置参数max_num_nodes的搜索空间为[16, 32, 64, 128, 256] global_search_space.choice(max_num_nodes, [16, 32, 64, 128, 256])# 设置参数use_hessian_gain的搜索空间为[True, False] # tuner.choice(use_hessian_gain, [True, False])# 设置参数shrinkage的搜索空间为[0.02, 0.05, 0.10, 0.15] tuner.choice(shrinkage, [0.02, 0.05, 0.10, 0.15])# 设置参数num_candidate_attributes_ratio的搜索空间为[0.2, 0.5, 0.9, 1.0] tuner.choice(num_candidate_attributes_ratio, [0.2, 0.5, 0.9, 1.0])# 创建一个斜切搜索空间对象设置参数split_axis的搜索空间为[SPARSE_OBLIQUE]并将其与之前的全局搜索空间对象合并 oblique_space tuner.choice(split_axis, [SPARSE_OBLIQUE], mergeTrue)# 在斜切搜索空间对象中设置参数sparse_oblique_normalization的搜索空间为[NONE, STANDARD_DEVIATION, MIN_MAX] oblique_space.choice(sparse_oblique_normalization, [NONE, STANDARD_DEVIATION, MIN_MAX])# 在斜切搜索空间对象中设置参数sparse_oblique_weights的搜索空间为[BINARY, CONTINUOUS] oblique_space.choice(sparse_oblique_weights, [BINARY, CONTINUOUS])# 在斜切搜索空间对象中设置参数sparse_oblique_num_projections_exponent的搜索空间为[1.0, 1.5] oblique_space.choice(sparse_oblique_num_projections_exponent, [1.0, 1.5])# 使用调谐器来创建一个梯度提升树模型 tuned_model tfdf.keras.GradientBoostedTreesModel(tunertuner)# 使用训练数据集来训练调谐后的模型设置verbose参数为0表示不显示训练过程中的日志信息 tuned_model.fit(train_ds, verbose0)# 获取调谐后模型的评估结果 tuned_self_evaluation tuned_model.make_inspector().evaluation()# 打印调谐后模型的准确率和损失值 print(fAccuracy: {tuned_self_evaluation.accuracy} Loss:{tuned_self_evaluation.loss})Use /tmp/tmpf3gqf8yh as temporary training directory[INFO 2023-05-18T10:33:20.75889463900:00 kernel.cc:1214] Loading model from path /tmp/tmpf3gqf8yh/model/ with prefix 1800e47d98cd4401 [INFO 2023-05-18T10:33:20.77389927700:00 decision_forest.cc:661] Model loaded with 19 root(s), 589 node(s), and 12 input feature(s). [INFO 2023-05-18T10:33:20.77394909900:00 abstract_model.cc:1311] Engine GradientBoostedTreesGeneric built [INFO 2023-05-18T10:33:20.77397770900:00 kernel.cc:1046] Use fast generic engineAccuracy: 0.9178082346916199 Loss:0.6503586769104004在上面的单元格的最后一行中您可以看到准确率比以前使用默认参数和手动设置的参数要高。 这就是超参数调整的主要思想。 要获取更多信息您可以参考此教程自动化超参数调整 9. 创建一个集成模型 在这里您将使用不同的种子创建100个模型并将它们的结果组合起来。 这种方法消除了与创建ML模型相关的一些随机因素。 在GBT的创建中使用了honest参数。它将使用不同的训练示例来推断结构和叶值。这种正则化技术将示例交换为偏差估计。 # 代码注释predictions None # 初始化预测结果为空 num_predictions 0 # 初始化预测次数为0for i in range(100): # 循环100次print(fi:{i}) # 打印当前循环的次数i# 可能的模型GradientBoostedTreesModel 或 RandomForestModelmodel tfdf.keras.GradientBoostedTreesModel(verbose0, # 输出很少的日志features[tfdf.keras.FeatureUsage(namen) for n in input_features], # 使用指定的特征exclude_non_specified_featuresTrue, # 只使用features中指定的特征random_seedi, # 设置随机种子honestTrue, # 使用honest模式)model.fit(train_ds) # 使用训练数据集进行模型训练sub_predictions model.predict(serving_ds, verbose0)[:,0] # 对测试数据集进行预测并获取预测结果的第一列if predictions is None: # 如果预测结果为空predictions sub_predictions # 将当前预测结果赋值给predictionselse:predictions sub_predictions # 将当前预测结果与之前的预测结果相加num_predictions 1 # 预测次数加1predictions / num_predictions # 将预测结果除以预测次数得到平均预测结果kaggle_predictions pd.DataFrame({PassengerId: serving_df[PassengerId], # 使用serving_df中的PassengerId列作为PassengerId列Survived: (predictions 0.5).astype(int) # 将预测结果大于等于0.5的转换为整数类型并作为Survived列})make_submission(kaggle_predictions) # 调用make_submission函数传入kaggle_predictions作为参数生成提交结果i:0[INFO 2023-05-18T10:33:21.94833771200:00 kernel.cc:1214] Loading model from path /tmp/tmplm3k4_lm/model/ with prefix c4f440bf7ff942e4 [INFO 2023-05-18T10:33:21.95319012700:00 kernel.cc:1046] Use fast generic enginei:1[INFO 2023-05-18T10:33:24.23000789100:00 kernel.cc:1214] Loading model from path /tmp/tmpl3j28v1o/model/ with prefix ea268a84a741444b [INFO 2023-05-18T10:33:24.25179482600:00 kernel.cc:1046] Use fast generic enginei:2[INFO 2023-05-18T10:33:25.49820781100:00 kernel.cc:1214] Loading model from path /tmp/tmpmj97qbr5/model/ with prefix f2f7410f63bd409a [INFO 2023-05-18T10:33:25.50319464100:00 kernel.cc:1046] Use fast generic enginei:3[INFO 2023-05-18T10:33:27.91062616300:00 kernel.cc:1214] Loading model from path /tmp/tmpwsp1w2ml/model/ with prefix f928c3cbda334e6d [INFO 2023-05-18T10:33:27.93808803300:00 kernel.cc:1046] Use fast generic enginei:4[INFO 2023-05-18T10:33:30.33996647800:00 kernel.cc:1214] Loading model from path /tmp/tmp4dqqgbtz/model/ with prefix a9e2b4aa2bd14f15 [INFO 2023-05-18T10:33:30.34631706200:00 kernel.cc:1046] Use fast generic enginei:5[INFO 2023-05-18T10:33:31.45362842900:00 kernel.cc:1214] Loading model from path /tmp/tmpgvxkiu9m/model/ with prefix f5a20793ca43486e [INFO 2023-05-18T10:33:31.45718121400:00 abstract_model.cc:1311] Engine GradientBoostedTreesQuickScorerExtended built [INFO 2023-05-18T10:33:31.45724274200:00 kernel.cc:1046] Use fast generic enginei:6[INFO 2023-05-18T10:33:32.69933774500:00 kernel.cc:1214] Loading model from path /tmp/tmposloraoe/model/ with prefix 7641e344b3e84731 [INFO 2023-05-18T10:33:32.70739488500:00 kernel.cc:1046] Use fast generic enginei:7[INFO 2023-05-18T10:33:34.85596789300:00 kernel.cc:1214] Loading model from path /tmp/tmp37s3iidq/model/ with prefix f9acd15508a4477c [INFO 2023-05-18T10:33:34.87697824800:00 kernel.cc:1046] Use fast generic enginei:8[INFO 2023-05-18T10:33:36.13397921400:00 kernel.cc:1214] Loading model from path /tmp/tmp2w1jbf7w/model/ with prefix a73d32791aad4620 [INFO 2023-05-18T10:33:36.14457015900:00 kernel.cc:1046] Use fast generic enginei:9[INFO 2023-05-18T10:33:38.07821241500:00 kernel.cc:1214] Loading model from path /tmp/tmpf8h2tme_/model/ with prefix c32733675faa4571 [INFO 2023-05-18T10:33:38.09593729900:00 kernel.cc:1046] Use fast generic enginei:10[INFO 2023-05-18T10:33:39.29440489700:00 kernel.cc:1214] Loading model from path /tmp/tmp_34hnzg2/model/ with prefix d86f7947a9924e08 [INFO 2023-05-18T10:33:39.30067543900:00 kernel.cc:1046] Use fast generic enginei:11[INFO 2023-05-18T10:33:40.71035661200:00 kernel.cc:1214] Loading model from path /tmp/tmpqqhxvzqa/model/ with prefix f4fa80b88812483e [INFO 2023-05-18T10:33:40.72559344800:00 kernel.cc:1046] Use fast generic enginei:12[INFO 2023-05-18T10:33:41.87269335900:00 kernel.cc:1214] Loading model from path /tmp/tmpgio8_emb/model/ with prefix 584bc3336ff148d4 [INFO 2023-05-18T10:33:41.87892618800:00 abstract_model.cc:1311] Engine GradientBoostedTreesQuickScorerExtended built [INFO 2023-05-18T10:33:41.87897337300:00 kernel.cc:1046] Use fast generic enginei:13[INFO 2023-05-18T10:33:43.13343695600:00 kernel.cc:1214] Loading model from path /tmp/tmp_fe2ypgw/model/ with prefix 665f04dc50494529 [INFO 2023-05-18T10:33:43.14499279800:00 kernel.cc:1046] Use fast generic enginei:14[INFO 2023-05-18T10:33:44.30798650600:00 kernel.cc:1214] Loading model from path /tmp/tmpr81v89fc/model/ with prefix 18d7d2a243594cee [INFO 2023-05-18T10:33:44.31455154400:00 kernel.cc:1046] Use fast generic enginei:15[INFO 2023-05-18T10:33:46.14229749200:00 kernel.cc:1214] Loading model from path /tmp/tmpbgs_2ci0/model/ with prefix 4e729daf7fa14285 [INFO 2023-05-18T10:33:46.15084327700:00 kernel.cc:1046] Use fast generic enginei:16[INFO 2023-05-18T10:33:48.03933731600:00 kernel.cc:1214] Loading model from path /tmp/tmpr5v82plm/model/ with prefix 7f12fa3d909d4f27 [INFO 2023-05-18T10:33:48.05326588400:00 kernel.cc:1046] Use fast generic enginei:17[INFO 2023-05-18T10:33:49.87768950200:00 kernel.cc:1214] Loading model from path /tmp/tmpu84ev3x9/model/ with prefix 17e265ef795c476a [INFO 2023-05-18T10:33:49.89150563900:00 kernel.cc:1046] Use fast generic enginei:18[INFO 2023-05-18T10:33:51.27906178600:00 kernel.cc:1214] Loading model from path /tmp/tmp_kn7vjpk/model/ with prefix de89cda1f7cb457a [INFO 2023-05-18T10:33:51.29686630400:00 kernel.cc:1046] Use fast generic enginei:19[INFO 2023-05-18T10:33:52.88421084500:00 kernel.cc:1214] Loading model from path /tmp/tmpiqbe9z0k/model/ with prefix 3ffde27267724071 [INFO 2023-05-18T10:33:52.90329279700:00 abstract_model.cc:1311] Engine GradientBoostedTreesQuickScorerExtended built [INFO 2023-05-18T10:33:52.90335997700:00 kernel.cc:1046] Use fast generic enginei:20[INFO 2023-05-18T10:33:54.33933190300:00 kernel.cc:1214] Loading model from path /tmp/tmpp23celh4/model/ with prefix 10648c743627411c [INFO 2023-05-18T10:33:54.35517687900:00 kernel.cc:1046] Use fast generic enginei:21[INFO 2023-05-18T10:33:55.57996446300:00 kernel.cc:1214] Loading model from path /tmp/tmph_zw36wd/model/ with prefix a2bb80559c7e4821 [INFO 2023-05-18T10:33:55.58621443200:00 kernel.cc:1046] Use fast generic enginei:22[INFO 2023-05-18T10:33:56.75488623300:00 kernel.cc:1214] Loading model from path /tmp/tmplw1k53vh/model/ with prefix f8c87a097abd4766 [INFO 2023-05-18T10:33:56.76260106500:00 kernel.cc:1046] Use fast generic enginei:23[INFO 2023-05-18T10:33:58.07757016300:00 kernel.cc:1214] Loading model from path /tmp/tmpqth9jo1v/model/ with prefix d44f89acfd884036 [INFO 2023-05-18T10:33:58.08687109800:00 kernel.cc:1046] Use fast generic enginei:24[INFO 2023-05-18T10:33:59.7568303400:00 kernel.cc:1214] Loading model from path /tmp/tmp_320ckz8/model/ with prefix ca6c614f297c4190 [INFO 2023-05-18T10:33:59.76286777600:00 kernel.cc:1046] Use fast generic enginei:25[INFO 2023-05-18T10:34:01.11161482700:00 kernel.cc:1214] Loading model from path /tmp/tmplr1dgz7t/model/ with prefix 5f58ccbc2f714cef [INFO 2023-05-18T10:34:01.12404388900:00 kernel.cc:1046] Use fast generic enginei:26[INFO 2023-05-18T10:34:02.40387509400:00 kernel.cc:1214] Loading model from path /tmp/tmptmc420hg/model/ with prefix f15c70a4abd142ed [INFO 2023-05-18T10:34:02.41447722600:00 kernel.cc:1046] Use fast generic enginei:27[INFO 2023-05-18T10:34:03.63288511700:00 kernel.cc:1214] Loading model from path /tmp/tmp9bnj_rhe/model/ with prefix 09cf9e80b54e4f01 [INFO 2023-05-18T10:34:03.63992259400:00 abstract_model.cc:1311] Engine GradientBoostedTreesQuickScorerExtended built [INFO 2023-05-18T10:34:03.63998566700:00 kernel.cc:1046] Use fast generic enginei:28[INFO 2023-05-18T10:34:04.8009339400:00 kernel.cc:1214] Loading model from path /tmp/tmpdy4ty8e7/model/ with prefix 12ecce69a3094482 [INFO 2023-05-18T10:34:04.80656221700:00 kernel.cc:1046] Use fast generic enginei:29[INFO 2023-05-18T10:34:06.17664916400:00 kernel.cc:1214] Loading model from path /tmp/tmp4s_urrdz/model/ with prefix 7c52615e6dbe49b6 [INFO 2023-05-18T10:34:06.19010691700:00 kernel.cc:1046] Use fast generic enginei:30[INFO 2023-05-18T10:34:08.04295270600:00 kernel.cc:1214] Loading model from path /tmp/tmpa5ffc53i/model/ with prefix 778954274b29412a [INFO 2023-05-18T10:34:08.07141237600:00 kernel.cc:1046] Use fast generic enginei:31[INFO 2023-05-18T10:34:10.13054480600:00 kernel.cc:1214] Loading model from path /tmp/tmpe531jwwn/model/ with prefix f480e9ddd2034b6f [INFO 2023-05-18T10:34:10.14334025800:00 kernel.cc:1046] Use fast generic enginei:32[INFO 2023-05-18T10:34:11.870452200:00 kernel.cc:1214] Loading model from path /tmp/tmpvh3w4qn3/model/ with prefix 530fadef1eda4a78 [INFO 2023-05-18T10:34:11.87713167700:00 kernel.cc:1046] Use fast generic enginei:33[INFO 2023-05-18T10:34:13.26104657200:00 kernel.cc:1214] Loading model from path /tmp/tmp6cmvc2ni/model/ with prefix 9983903467604992 [INFO 2023-05-18T10:34:13.27537426500:00 kernel.cc:1046] Use fast generic enginei:34[INFO 2023-05-18T10:34:14.93243635700:00 kernel.cc:1214] Loading model from path /tmp/tmpuyr6xbug/model/ with prefix e8d30d97cfdc438f [INFO 2023-05-18T10:34:14.94177256600:00 abstract_model.cc:1311] Engine GradientBoostedTreesQuickScorerExtended built [INFO 2023-05-18T10:34:14.94182199800:00 kernel.cc:1046] Use fast generic enginei:35[INFO 2023-05-18T10:34:16.23986957800:00 kernel.cc:1214] Loading model from path /tmp/tmpbupnml9z/model/ with prefix d49e70e1dc4643a5 [INFO 2023-05-18T10:34:16.24832187100:00 kernel.cc:1046] Use fast generic enginei:36[INFO 2023-05-18T10:34:17.79059363100:00 kernel.cc:1214] Loading model from path /tmp/tmpm9_7mg97/model/ with prefix 7c5d4bb088834cdf [INFO 2023-05-18T10:34:17.80650287400:00 kernel.cc:1046] Use fast generic enginei:37[INFO 2023-05-18T10:34:19.11900109700:00 kernel.cc:1214] Loading model from path /tmp/tmpprk9ne1p/model/ with prefix 92577de9c74c4e30 [INFO 2023-05-18T10:34:19.12885190800:00 kernel.cc:1046] Use fast generic enginei:38[INFO 2023-05-18T10:34:20.71864058900:00 kernel.cc:1214] Loading model from path /tmp/tmpxnx03asy/model/ with prefix c06e0e0c2b3143d6 [INFO 2023-05-18T10:34:20.73377266100:00 kernel.cc:1046] Use fast generic enginei:39[INFO 2023-05-18T10:34:22.27600051800:00 kernel.cc:1214] Loading model from path /tmp/tmpl1bcgsyt/model/ with prefix 3f8161548998456a [INFO 2023-05-18T10:34:22.29010237800:00 kernel.cc:1046] Use fast generic enginei:40[INFO 2023-05-18T10:34:23.67780187600:00 kernel.cc:1214] Loading model from path /tmp/tmp8etd50zo/model/ with prefix c19b3262a9cf4a82 [INFO 2023-05-18T10:34:23.68291420400:00 kernel.cc:1046] Use fast generic enginei:41[INFO 2023-05-18T10:34:25.26055353700:00 kernel.cc:1214] Loading model from path /tmp/tmp6ctspflq/model/ with prefix 895d3dc68ff041a3 [INFO 2023-05-18T10:34:25.27707183900:00 abstract_model.cc:1311] Engine GradientBoostedTreesQuickScorerExtended built [INFO 2023-05-18T10:34:25.27712352600:00 kernel.cc:1046] Use fast generic enginei:42[INFO 2023-05-18T10:34:26.66712239700:00 kernel.cc:1214] Loading model from path /tmp/tmpegzgyttm/model/ with prefix e8c589e4d6f54675 [INFO 2023-05-18T10:34:26.67805289400:00 kernel.cc:1046] Use fast generic enginei:43[INFO 2023-05-18T10:34:28.38445339800:00 kernel.cc:1214] Loading model from path /tmp/tmpp2efe_ge/model/ with prefix a2a2af2a909f43bf [INFO 2023-05-18T10:34:28.40448205300:00 kernel.cc:1046] Use fast generic enginei:44[INFO 2023-05-18T10:34:29.82474124500:00 kernel.cc:1214] Loading model from path /tmp/tmpjiiwvuj6/model/ with prefix 14c443fb8e0e4b16 [INFO 2023-05-18T10:34:29.83571814900:00 kernel.cc:1046] Use fast generic enginei:45[INFO 2023-05-18T10:34:31.40355762200:00 kernel.cc:1214] Loading model from path /tmp/tmpw7t4qv67/model/ with prefix 058a3c9f358a4441 [INFO 2023-05-18T10:34:31.40734842800:00 kernel.cc:1046] Use fast generic enginei:46[INFO 2023-05-18T10:34:33.01672172700:00 kernel.cc:1214] Loading model from path /tmp/tmpf33zt1_8/model/ with prefix 13f35c50f63e4523 [INFO 2023-05-18T10:34:33.03248256600:00 kernel.cc:1046] Use fast generic enginei:47[INFO 2023-05-18T10:34:34.64240070800:00 kernel.cc:1214] Loading model from path /tmp/tmp__v6r89g/model/ with prefix e9d642544b0e4c04 [INFO 2023-05-18T10:34:34.65760065400:00 kernel.cc:1046] Use fast generic enginei:48[INFO 2023-05-18T10:34:35.86633749600:00 kernel.cc:1214] Loading model from path /tmp/tmp7buinln0/model/ with prefix e761528f031f4a7e [INFO 2023-05-18T10:34:35.87127453100:00 abstract_model.cc:1311] Engine GradientBoostedTreesQuickScorerExtended built [INFO 2023-05-18T10:34:35.87134465100:00 kernel.cc:1046] Use fast generic enginei:49[INFO 2023-05-18T10:34:37.10649102500:00 kernel.cc:1214] Loading model from path /tmp/tmp866z5gwf/model/ with prefix ed6acb5d8332445f [INFO 2023-05-18T10:34:37.11499466200:00 kernel.cc:1046] Use fast generic enginei:50[INFO 2023-05-18T10:34:38.54455779700:00 kernel.cc:1214] Loading model from path /tmp/tmpnl2o_rwi/model/ with prefix 93b66a53f7d84de9 [INFO 2023-05-18T10:34:38.55841879900:00 kernel.cc:1046] Use fast generic enginei:51[INFO 2023-05-18T10:34:40.58534258200:00 kernel.cc:1214] Loading model from path /tmp/tmp1duuv71f/model/ with prefix ed7ae4de78b5440b [INFO 2023-05-18T10:34:40.60304309600:00 kernel.cc:1046] Use fast generic enginei:52[INFO 2023-05-18T10:34:41.98642148800:00 kernel.cc:1214] Loading model from path /tmp/tmpvw6ii_z9/model/ with prefix f8db08bb01c647d3 [INFO 2023-05-18T10:34:41.99547951500:00 kernel.cc:1046] Use fast generic enginei:53[INFO 2023-05-18T10:34:43.84663057100:00 kernel.cc:1214] Loading model from path /tmp/tmpny_ukl54/model/ with prefix 1785ce9217aa4994 [INFO 2023-05-18T10:34:43.85549706400:00 kernel.cc:1046] Use fast generic enginei:54[INFO 2023-05-18T10:34:45.15183312600:00 kernel.cc:1214] Loading model from path /tmp/tmpiya7usve/model/ with prefix bbbdfef726764bd3 [INFO 2023-05-18T10:34:45.15658944200:00 kernel.cc:1046] Use fast generic enginei:55[INFO 2023-05-18T10:34:46.7735820900:00 kernel.cc:1214] Loading model from path /tmp/tmpbxg0t47u/model/ with prefix a2add2a15a8b4937 [INFO 2023-05-18T10:34:46.78998318600:00 abstract_model.cc:1311] Engine GradientBoostedTreesQuickScorerExtended built [INFO 2023-05-18T10:34:46.79003692400:00 kernel.cc:1046] Use fast generic enginei:56[INFO 2023-05-18T10:34:49.18573049600:00 kernel.cc:1214] Loading model from path /tmp/tmpvgsmijpy/model/ with prefix f11c35b624dd4801 [INFO 2023-05-18T10:34:49.20045450800:00 kernel.cc:1046] Use fast generic enginei:57[INFO 2023-05-18T10:34:50.47523306900:00 kernel.cc:1214] Loading model from path /tmp/tmpj2pqhlzf/model/ with prefix 94a270b459db41f7 [INFO 2023-05-18T10:34:50.48009802100:00 kernel.cc:1046] Use fast generic enginei:58[INFO 2023-05-18T10:34:51.8147394300:00 kernel.cc:1214] Loading model from path /tmp/tmpc318b_47/model/ with prefix 35a4cc3721344731 [INFO 2023-05-18T10:34:51.82209262900:00 kernel.cc:1046] Use fast generic enginei:59[INFO 2023-05-18T10:34:53.23103710100:00 kernel.cc:1214] Loading model from path /tmp/tmplj6owa0f/model/ with prefix a8ea31fc3a404c13 [INFO 2023-05-18T10:34:53.24191639500:00 kernel.cc:1046] Use fast generic enginei:60[INFO 2023-05-18T10:34:54.83773227400:00 kernel.cc:1214] Loading model from path /tmp/tmpc_k5t1ol/model/ with prefix 6637c533b177416a [INFO 2023-05-18T10:34:54.8492888700:00 kernel.cc:1046] Use fast generic enginei:61[INFO 2023-05-18T10:34:56.50217878900:00 kernel.cc:1214] Loading model from path /tmp/tmp6p3yzkc6/model/ with prefix 7f3f357e4ecd467b [INFO 2023-05-18T10:34:56.50771737400:00 kernel.cc:1046] Use fast generic enginei:62[INFO 2023-05-18T10:34:58.56253380800:00 kernel.cc:1214] Loading model from path /tmp/tmp4qwsdjx5/model/ with prefix 3cf2abcc265d4eaa [INFO 2023-05-18T10:34:58.59105386200:00 abstract_model.cc:1311] Engine GradientBoostedTreesQuickScorerExtended built [INFO 2023-05-18T10:34:58.59112847800:00 kernel.cc:1046] Use fast generic enginei:63[INFO 2023-05-18T10:35:01.04501370500:00 kernel.cc:1214] Loading model from path /tmp/tmpsc1d3fdo/model/ with prefix 331111241efa4eaf [INFO 2023-05-18T10:35:01.05500220900:00 kernel.cc:1046] Use fast generic enginei:64[INFO 2023-05-18T10:35:02.49143617300:00 kernel.cc:1214] Loading model from path /tmp/tmpz8_0rh4j/model/ with prefix 782b4b9544664c34 [INFO 2023-05-18T10:35:02.50064839800:00 kernel.cc:1046] Use fast generic enginei:65[INFO 2023-05-18T10:35:03.74698315900:00 kernel.cc:1214] Loading model from path /tmp/tmpuad51ad_/model/ with prefix 62ad43498a8945ee [INFO 2023-05-18T10:35:03.75235527300:00 kernel.cc:1046] Use fast generic enginei:66[INFO 2023-05-18T10:35:05.00218674100:00 kernel.cc:1214] Loading model from path /tmp/tmpmr6hhyib/model/ with prefix e13e4dafafe240a9 [INFO 2023-05-18T10:35:05.00925305200:00 kernel.cc:1046] Use fast generic enginei:67[INFO 2023-05-18T10:35:06.63980237700:00 kernel.cc:1214] Loading model from path /tmp/tmp48hjyy5y/model/ with prefix b57f917606ba4450 [INFO 2023-05-18T10:35:06.65997027500:00 kernel.cc:1046] Use fast generic enginei:68[INFO 2023-05-18T10:35:08.08200185600:00 kernel.cc:1214] Loading model from path /tmp/tmpgpkk86q4/model/ with prefix 0585d52463174c5c [INFO 2023-05-18T10:35:08.09527297400:00 kernel.cc:1046] Use fast generic enginei:69[INFO 2023-05-18T10:35:09.33113657100:00 kernel.cc:1214] Loading model from path /tmp/tmph_frny4j/model/ with prefix fa5a095fe4904682 [INFO 2023-05-18T10:35:09.33819943500:00 abstract_model.cc:1311] Engine GradientBoostedTreesQuickScorerExtended built [INFO 2023-05-18T10:35:09.33825467700:00 kernel.cc:1046] Use fast generic enginei:70[INFO 2023-05-18T10:35:10.64088761600:00 kernel.cc:1214] Loading model from path /tmp/tmp4wjgf2r2/model/ with prefix 80c4c80589414e13 [INFO 2023-05-18T10:35:10.65063603600:00 kernel.cc:1046] Use fast generic enginei:71[INFO 2023-05-18T10:35:12.43009999300:00 kernel.cc:1214] Loading model from path /tmp/tmptjlatbqq/model/ with prefix 26007776bcc648d7 [INFO 2023-05-18T10:35:12.43829363400:00 kernel.cc:1046] Use fast generic enginei:72[INFO 2023-05-18T10:35:14.01953762300:00 kernel.cc:1214] Loading model from path /tmp/tmpu4egs0bv/model/ with prefix 4a67d5be0d72468d [INFO 2023-05-18T10:35:14.03650530500:00 kernel.cc:1046] Use fast generic enginei:73[INFO 2023-05-18T10:35:15.51261387300:00 kernel.cc:1214] Loading model from path /tmp/tmpfqjqzbub/model/ with prefix aca012bed5e74739 [INFO 2023-05-18T10:35:15.52028297800:00 kernel.cc:1046] Use fast generic enginei:74[INFO 2023-05-18T10:35:16.86164020600:00 kernel.cc:1214] Loading model from path /tmp/tmpj9r8iw0a/model/ with prefix 74b2a1783b9e46a6 [INFO 2023-05-18T10:35:16.87459919400:00 kernel.cc:1046] Use fast generic enginei:75[INFO 2023-05-18T10:35:18.12209886600:00 kernel.cc:1214] Loading model from path /tmp/tmpruig1t4u/model/ with prefix d7ab0b72252a4c10 [INFO 2023-05-18T10:35:18.13077554600:00 kernel.cc:1046] Use fast generic enginei:76[INFO 2023-05-18T10:35:19.82224343900:00 kernel.cc:1214] Loading model from path /tmp/tmpoqsf9fbn/model/ with prefix eb5803ca471a4f5a [INFO 2023-05-18T10:35:19.82674380500:00 abstract_model.cc:1311] Engine GradientBoostedTreesQuickScorerExtended built [INFO 2023-05-18T10:35:19.8268182100:00 kernel.cc:1046] Use fast generic enginei:77[INFO 2023-05-18T10:35:20.98891175400:00 kernel.cc:1214] Loading model from path /tmp/tmpqi5x3v5z/model/ with prefix 92ba1de56c4b4bea [INFO 2023-05-18T10:35:20.99446453100:00 kernel.cc:1046] Use fast generic enginei:78[INFO 2023-05-18T10:35:22.20058027800:00 kernel.cc:1214] Loading model from path /tmp/tmpcun3o_n6/model/ with prefix 6b72ab70b8af48d5 [INFO 2023-05-18T10:35:22.20768457500:00 kernel.cc:1046] Use fast generic enginei:79[INFO 2023-05-18T10:35:23.40822200:00 kernel.cc:1214] Loading model from path /tmp/tmpl172n50i/model/ with prefix aacd198ef20c48ab [INFO 2023-05-18T10:35:23.41612696800:00 kernel.cc:1046] Use fast generic enginei:80[INFO 2023-05-18T10:35:24.75068012300:00 kernel.cc:1214] Loading model from path /tmp/tmp65w8y5ov/model/ with prefix 11dca72a6a674b19 [INFO 2023-05-18T10:35:24.76142098200:00 kernel.cc:1046] Use fast generic enginei:81[INFO 2023-05-18T10:35:26.6025329500:00 kernel.cc:1214] Loading model from path /tmp/tmpk2brm2qt/model/ with prefix ef8df47ffbb94864 [INFO 2023-05-18T10:35:26.61421957400:00 kernel.cc:1046] Use fast generic enginei:82[INFO 2023-05-18T10:35:28.33178215100:00 kernel.cc:1214] Loading model from path /tmp/tmposmdbjqj/model/ with prefix b5fa31b36b9346c6 [INFO 2023-05-18T10:35:28.34230555200:00 kernel.cc:1046] Use fast generic enginei:83[INFO 2023-05-18T10:35:30.12609336100:00 kernel.cc:1214] Loading model from path /tmp/tmpjp8omn7j/model/ with prefix 1911d6a9dc5245b5 [INFO 2023-05-18T10:35:30.13554221500:00 abstract_model.cc:1311] Engine GradientBoostedTreesQuickScorerExtended built [INFO 2023-05-18T10:35:30.13559196800:00 kernel.cc:1046] Use fast generic enginei:84[INFO 2023-05-18T10:35:32.51033374600:00 kernel.cc:1214] Loading model from path /tmp/tmp1tja5r_e/model/ with prefix aa3f4c78bb394574 [INFO 2023-05-18T10:35:32.53135092200:00 kernel.cc:1046] Use fast generic enginei:85[INFO 2023-05-18T10:35:33.84404268100:00 kernel.cc:1214] Loading model from path /tmp/tmp0r236t3e/model/ with prefix 19ff9f95ddc2438e [INFO 2023-05-18T10:35:33.85159679100:00 kernel.cc:1046] Use fast generic enginei:86[INFO 2023-05-18T10:35:35.40702220100:00 kernel.cc:1214] Loading model from path /tmp/tmpeuc6bj_3/model/ with prefix 6dd65111acdd4630 [INFO 2023-05-18T10:35:35.42492864800:00 kernel.cc:1046] Use fast generic enginei:87[INFO 2023-05-18T10:35:37.04014832100:00 kernel.cc:1214] Loading model from path /tmp/tmp358yev21/model/ with prefix da78df557f754986 [INFO 2023-05-18T10:35:37.06058325400:00 kernel.cc:1046] Use fast generic enginei:88[INFO 2023-05-18T10:35:38.42741165100:00 kernel.cc:1214] Loading model from path /tmp/tmpzakqb0xp/model/ with prefix ad35a17e9b86465b [INFO 2023-05-18T10:35:38.44043801800:00 kernel.cc:1046] Use fast generic enginei:89[INFO 2023-05-18T10:35:39.63813375500:00 kernel.cc:1214] Loading model from path /tmp/tmpildtvtld/model/ with prefix 0ac7f95660244655 [INFO 2023-05-18T10:35:39.64402317500:00 kernel.cc:1046] Use fast generic enginei:90[INFO 2023-05-18T10:35:41.00861714600:00 kernel.cc:1214] Loading model from path /tmp/tmpkrivrsps/model/ with prefix 40280f0ab1094407 [INFO 2023-05-18T10:35:41.01974395900:00 abstract_model.cc:1311] Engine GradientBoostedTreesQuickScorerExtended built [INFO 2023-05-18T10:35:41.01979178800:00 kernel.cc:1046] Use fast generic enginei:91[INFO 2023-05-18T10:35:42.25240847700:00 kernel.cc:1214] Loading model from path /tmp/tmptqwp8y1g/model/ with prefix b8cf07a7fb3c4ca6 [INFO 2023-05-18T10:35:42.25979288700:00 kernel.cc:1046] Use fast generic enginei:92[INFO 2023-05-18T10:35:43.79288972800:00 kernel.cc:1214] Loading model from path /tmp/tmpj_4udme_/model/ with prefix d28fe4cbc6944242 [INFO 2023-05-18T10:35:43.81149578600:00 kernel.cc:1046] Use fast generic enginei:93[INFO 2023-05-18T10:35:45.14445581900:00 kernel.cc:1214] Loading model from path /tmp/tmpgvv3j4l_/model/ with prefix cd5cbe19609841d7 [INFO 2023-05-18T10:35:45.15513797900:00 kernel.cc:1046] Use fast generic enginei:94[INFO 2023-05-18T10:35:46.37654226800:00 kernel.cc:1214] Loading model from path /tmp/tmpa6bn46wq/model/ with prefix 7453510caac74087 [INFO 2023-05-18T10:35:46.38360101100:00 kernel.cc:1046] Use fast generic enginei:95[INFO 2023-05-18T10:35:47.67621283300:00 kernel.cc:1214] Loading model from path /tmp/tmp7zbxz1bs/model/ with prefix c927c5dbf31844b1 [INFO 2023-05-18T10:35:47.68525137300:00 kernel.cc:1046] Use fast generic enginei:96[INFO 2023-05-18T10:35:48.98741462600:00 kernel.cc:1214] Loading model from path /tmp/tmplvx1w0aj/model/ with prefix 73702a762b25465f [INFO 2023-05-18T10:35:48.99827320300:00 kernel.cc:1046] Use fast generic enginei:97[INFO 2023-05-18T10:35:50.15114581300:00 kernel.cc:1214] Loading model from path /tmp/tmp_j62smlb/model/ with prefix 2d637fb0572e4544 [INFO 2023-05-18T10:35:50.15686302700:00 kernel.cc:1046] Use fast generic enginei:98[INFO 2023-05-18T10:35:51.41548690800:00 kernel.cc:1214] Loading model from path /tmp/tmp7aug1mjr/model/ with prefix a825629f8cc849b0 [INFO 2023-05-18T10:35:51.42380028100:00 abstract_model.cc:1311] Engine GradientBoostedTreesQuickScorerExtended built [INFO 2023-05-18T10:35:51.42384708300:00 kernel.cc:1046] Use fast generic enginei:99[INFO 2023-05-18T10:35:52.9071137900:00 kernel.cc:1214] Loading model from path /tmp/tmpf19kt4x7/model/ with prefix b150b8c0efe248fa [INFO 2023-05-18T10:35:52.92213517700:00 kernel.cc:1046] Use fast generic engineSubmission exported to /kaggle/working/submission.csv
http://www.sadfv.cn/news/182559/

相关文章:

  • 电商网站建设实训要求网站建设策划 流程
  • 一号建站wordpress主题集成插件
  • 在网站上做的h5如何发到微信上天津建设网网站打不开
  • 湘潭网站建设优选磐石网络闪灵企业建站系统
  • 公司网站建设计入什么费用wordpress cms theme
  • 忘记php网站后台密码深圳科源建设集团有限公司网站
  • 长阳网站建设手机微网站开发的目的和意义
  • 网站优化排名的方法网站免费源码下载
  • 网站建设套餐是什么意思手机网站建设服务合同
  • wordpress 大站苏州市网站建设培训
  • 石家庄网站建设模板用dw做网站的流程
  • 服装网站建设策划案惠州房地产网站开发
  • 树莓派 做网站网络推广平台中心
  • 在线建设房屋设计网站网站栏目建设存在的问题
  • wordpress子文件夹建站无锡工程造价信息网
  • 开个人网站如何赚钱三亚做网站推广
  • 购物网站排名女装网址与网站的区别
  • 台州服务网站蓟县做网站
  • 网站建设实验报告手写做网站如何挣钱
  • 有了域名自己电脑怎么做网站临淄关键词网站优化哪家好
  • 成都的网站设计公司价格深圳市建设培训中心网站
  • 烟台网站建设公司个人网站虚拟主机
  • 网站icp备案费用临淄找工作信息网
  • 域名分类网站网站建设模拟软件
  • 哈尔滨自助建站模板广州找人做网站
  • 找个免费的网站网站建设与管理规范
  • 猪八戒里面做网站骗子很多免费行情软件app合集
  • 网站运营与公司简介wordpress占用内存过大
  • 网站建设合同要缴纳印花税吗阿里云网站模板
  • 网站建设主持词已有网站域名 怎么做网站