当前位置: 首页 > news >正文

制作网站要多久wordpress随机调用页面

制作网站要多久,wordpress随机调用页面,安卓小程序制作,百度竞价什么时候开始的无论是自己、家人或是朋友、客户的照片#xff0c;免不了有些是黑白的、被污损的、模糊的#xff0c;总想着修复一下。作为一个程序员 或者 程序员的家属#xff0c;当然都有责任满足他们的需求、实现他们的想法。除了这个#xff0c;学习了本文的成果#xff0c;或许你还…无论是自己、家人或是朋友、客户的照片免不了有些是黑白的、被污损的、模糊的总想着修复一下。作为一个程序员 或者 程序员的家属当然都有责任满足他们的需求、实现他们的想法。除了这个学习了本文的成果或许你还可以用来赚点小钱。 Windows下Python及Anaconda的安装与设置、代码执行之保姆指南https://blog.csdn.net/beijinghorn/article/details/134347642 8 GPEN 8.1 论文Paper GAN Prior Embedded Network for Blind Face Restoration in the Wild Paper: https://arxiv.org/abs/2105.06070 Supplementary: https://www4.comp.polyu.edu.hk/~cslzhang/paper/GPEN-cvpr21-supp.pdf Demo: https://vision.aliyun.com/experience/detail?spma211p3.14020179.J_7524944390.17.66cd4850wVDkUQtagNamefacebodychildrenEnhanceFace ModelScope: https://www.modelscope.cn/models/damo/cv_gpen_image-portrait-enhancement/summary 作者 Tao Yang, Peiran Ren, Xuansong Xie, https://cg.cs.tsinghua.edu.cn/people/~tyang Lei Zhang https://www4.comp.polyu.edu.hk/~cslzhang DAMO Academy, Alibaba Group, Hangzhou, China Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China 8.2 功能 8.2.1 旧照修复Face Restoration     8.2.2 纹理重建Selfie Restoration 8.2.3 人脸重建Face Colorization 8.2.4 划痕修复Face Inpainting 8.2.5 Conditional Image Synthesis (Seg2Face) 8.3 News (2023-02-15) GPEN-BFR-1024 and GPEN-BFR-2048 are now publicly available. Please download them via [ModelScope2]. (2023-02-15) We provide online demos via [ModelScope1] and [ModelScope2]. (2022-05-16) Add x1 sr model. Add --tile_size to avoid OOM. (2022-03-15) Add x4 sr model. Try --sr_scale. (2022-03-09) Add GPEN-BFR-2048 for selfies. I have to take it down due to commercial issues. Sorry about that. (2021-12-29) Add online demos  Hugging Face Spaces. Many thanks to CJWBW and AK391. (2021-12-16) Release a simplified training code of GPEN. It differs from our implementation in the paper, but could achieve comparable performance. We strongly recommend to change the degradation model. (2021-12-09) Add face parsing to better paste restored faces back. (2021-12-09) GPEN can run on CPU now by simply discarding --use_cuda. (2021-12-01) GPEN can now work on a Windows machine without compiling cuda codes. Please check it out. Thanks to Animadversio. Alternatively, you can try GPEN-Windows. Many thanks to Cioscos. (2021-10-22) GPEN can now work with SR methods. A SR model trained by myself is provided. Replace it with your own model if necessary. (2021-10-11) The Colab demo for GPEN is available now google colab logo. 8.4 下载模型 Download models from Modelscope Install modelscope: https://www.modelscope.cn/models/damo/cv_gpen_image-portrait-enhancement-hires/summary https://www.modelscope.cn/models/damo/cv_gpen_image-portrait-enhancement/summary https://www.modelscope.cn/models/damo/cv_gpen_image-portrait-enhancement-hires/summary pip install modelscope[cv] -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html Run the following codes: import cv2 from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from modelscope.outputs import OutputKeys portrait_enhancement pipeline(Tasks.image_portrait_enhancement, modeldamo/cv_gpen_image-portrait-enhancement-hires) result portrait_enhancement(https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/marilyn_monroe_4.jpg) cv2.imwrite(result.png, result[OutputKeys.OUTPUT_IMG]) It will automatically download the GPEN models. You can find the model in the local path ~/.cache/modelscope/hub/damo. Please note pytorch_model.pt, pytorch_model-2048.pt are respectively the 1024 and 2048 versions. 8.5 依赖项Usage python: https://img.shields.io/badge/python-v3.7.4-green.svg?styleplastic pytorch: https://img.shields.io/badge/pytorch-v1.7.0-green.svg?styleplastic cuda: https://img.shields.io/badge/cuda-v10.2.89-green.svg?styleplastic driver: https://img.shields.io/badge/driver-v460.73.01-green.svg?styleplastic gcc: https://img.shields.io/badge/gcc-v7.5.0-green.svg?styleplastic 8.5.1 Clone this repository: git clone https://github.com/yangxy/GPEN.git cd GPEN 8.5.2 Download RetinaFace model and our pre-trained model (not our best model due to commercial issues) and put them into weights/. RetinaFace-R50 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/RetinaFace-R50.pth ParseNet-latest https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/ParseNet-latest.pth model_ir_se50 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/model_ir_se50.pth GPEN-BFR-512 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-512.pth GPEN-BFR-512-D https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-512-D.pth GPEN-BFR-256 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-256.pth GPEN-BFR-256-D https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-BFR-256-D.pth GPEN-Colorization-1024 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-Colorization-1024.pth GPEN-Inpainting-1024 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-Inpainting-1024.pth GPEN-Seg2face-512 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-Seg2face-512.pth realesrnet_x1 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/realesrnet_x1.pth realesrnet_x2 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/realesrnet_x2.pth realesrnet_x4 https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/realesrnet_x4.pth 8.5.3 Restore face images: python demo.py --task FaceEnhancement --model GPEN-BFR-512 --in_size 512 --channel_multiplier 2 --narrow 1 --use_sr --sr_scale 4 --use_cuda --save_face --indir examples/imgs --outdir examples/outs-bfr Colorize faces: python demo.py --task FaceColorization --model GPEN-Colorization-1024 --in_size 1024 --use_cuda --indir examples/grays --outdir examples/outs-colorization Complete faces: python demo.py --task FaceInpainting --model GPEN-Inpainting-1024 --in_size 1024 --use_cuda --indir examples/ffhq-10 --outdir examples/outs-inpainting Synthesize faces: python demo.py --task Segmentation2Face --model GPEN-Seg2face-512 --in_size 512 --use_cuda --indir examples/segs --outdir examples/outs-seg2face Train GPEN for BFR with 4 GPUs: CUDA_VISIBLE_DEVICES0,1,2,3 python -m torch.distributed.launch --nproc_per_node4 --master_port4321 train_simple.py --size 1024 --channel_multiplier 2 --narrow 1 --ckpt weights --sample results --batch 2 --path your_path_of_cropedaligned_hq_faces (e.g., FFHQ) When testing your own model, set --key g_ema. Please check out run.sh for more details. 8.6 Main idea 8.7 Citation If our work is useful for your research, please consider citing: inproceedings{Yang2021GPEN,     title{GAN Prior Embedded Network for Blind Face Restoration in the Wild},     author{Tao Yang, Peiran Ren, Xuansong Xie, and Lei Zhang},     booktitle{IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},     year{2021} } 8.8 License © Alibaba, 2021. For academic and non-commercial use only. 8.9 Acknowledgments We borrow some codes from Pytorch_Retinaface, stylegan2-pytorch, Real-ESRGAN, and GFPGAN. 8.10 Contact If you have any questions or suggestions about this paper, feel free to reach me at yangtao9009gmail.com.
http://www.yutouwan.com/news/468121/

相关文章:

  • 沧州做网站多少钱wordpress显示当前文章的分类
  • 鄂州市建设局网站青岛做网站排名
  • 银川免费网站建设蚌埠市建设学校网站
  • 企业网站模板免费下载企业网站模板淄博网站建设淄博
  • 响应式网站模板 开源seo是做什么工作内容
  • 移动网站建设作业公司域名备案全部过程
  • 做化妆品网站wordpress 常用查询
  • 网站下拉广告vi设计网站有哪些
  • 个人网站推广apphtml网页设计实验总结
  • 网站建设与管理专业是什么平台公司破产
  • 青岛网站建设哪个平台好河南seo和网络推广
  • 南宁定制网站制作网络公司线下怎么做推广和宣传
  • 网站建设的电话公司名称及网址
  • 网站建设制作设计平台自建站网址
  • 网站备案信息查询申请表网络营销软件站
  • 网站登录不上去怎么回事wordpress主题 个性修改
  • 开网站购买的服务器放自己家还是放别人那里黄骅贴吧
  • 网站留言短信通知室内建筑设计
  • 厦门网站建设优化企业房产信息查询系统官方网站
  • 开一个网站需要多少钱做网站如何赚钱
  • 陇南市建设局网站公司网站怎样添加和修改内容
  • 安徽省住房与城乡建设网站网站 png
  • 做音乐网站代码wordpress固定导航栏
  • 设计 微网站网站建设 数据库购买
  • 济宁网站建设 智雅自豪得用wordpress删
  • 网站点击快速排名android游戏开发教程
  • 海东营销网站建设服务河北手机版建站系统哪个好
  • 外贸营销型网站制作wordpress自定义文章类型输出数量
  • 网站备案为什么 没有批复文件东莞58同城网招聘
  • vs2008不能新建网站网络营销推广手段