当前位置: 首页 > news >正文

上海营销型网站建设平台思帽西宁网站建设

上海营销型网站建设平台,思帽西宁网站建设,机关网站建设的请示,模板网代码目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入必要的工具包 1. 构建数据集 2. 激活函数logistic 3. 线性层算子 Linear 4. 两层的前馈神经网络MLP 5. 模型训练 一、实验介绍 本实验实现了一个简单的两层前馈神经网络 激活函数…目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入必要的工具包 1. 构建数据集 2. 激活函数logistic 3. 线性层算子 Linear 4. 两层的前馈神经网络MLP 5. 模型训练 一、实验介绍 本实验实现了一个简单的两层前馈神经网络 激活函数logistic线性层算子Linear 二、实验环境 本系列实验使用了PyTorch深度学习框架相关操作如下 1. 配置虚拟环境 conda create -n DL python3.7  conda activate DL pip install torch1.8.1cu102 torchvision0.9.1cu102 torchaudio0.8.1 -f https://download.pytorch.org/whl/torch_stable.htmlconda install matplotlib conda install scikit-learn 2. 库版本介绍 软件包本实验版本目前最新版matplotlib3.5.33.8.0numpy1.21.61.26.0python3.7.16scikit-learn0.22.11.3.0torch1.8.1cu1022.0.1torchaudio0.8.12.0.2torchvision0.9.1cu1020.15.2 三、实验内容 ChatGPT 前馈神经网络Feedforward Neural Network是一种常见的人工神经网络模型也被称为多层感知器Multilayer PerceptronMLP。它是一种基于前向传播的模型主要用于解决分类和回归问题。         前馈神经网络由多个层组成包括输入层、隐藏层和输出层。它的名称前馈源于信号在网络中只能向前流动即从输入层经过隐藏层最终到达输出层没有反馈连接。 以下是前馈神经网络的一般工作原理 输入层接收原始数据或特征向量作为网络的输入每个输入被表示为网络的一个神经元。每个神经元将输入加权并通过激活函数进行转换产生一个输出信号。 隐藏层前馈神经网络可以包含一个或多个隐藏层每个隐藏层由多个神经元组成。隐藏层的神经元接收来自上一层的输入并将加权和经过激活函数转换后的信号传递给下一层。 输出层最后一个隐藏层的输出被传递到输出层输出层通常由一个或多个神经元组成。输出层的神经元根据要解决的问题类型分类或回归使用适当的激活函数如Sigmoid、Softmax等将最终结果输出。 前向传播信号从输入层通过隐藏层传递到输出层的过程称为前向传播。在前向传播过程中每个神经元将前一层的输出乘以相应的权重并将结果传递给下一层。这样的计算通过网络中的每一层逐层进行直到产生最终的输出。 损失函数和训练前馈神经网络的训练过程通常涉及定义一个损失函数用于衡量模型预测输出与真实标签之间的差异。常见的损失函数包括均方误差Mean Squared Error和交叉熵Cross-Entropy。通过使用反向传播算法Backpropagation和优化算法如梯度下降网络根据损失函数的梯度进行参数调整以最小化损失函数的值。         前馈神经网络的优点包括能够处理复杂的非线性关系适用于各种问题类型并且能够通过训练来自动学习特征表示。然而它也存在一些挑战如容易过拟合、对大规模数据和高维数据的处理较困难等。为了应对这些挑战一些改进的网络结构和训练技术被提出如卷积神经网络Convolutional Neural Networks和循环神经网络Recurrent Neural Networks等。 本系列为实验内容对理论知识不进行详细阐释 咳咳其实是没时间整理待有缘之时回来填坑 0. 导入必要的工具包 import torch from torch import nn 1. 构建数据集 input torch.ones((1, 10)) 创建了一个输入张量input大小为(1, 10)。 2. 激活函数logistic def logistic(z):return 1.0 / (1.0 torch.exp(-z)) logistic函数的特点是将输入值映射到一个介于0和1之间的输出值可以看作是一种概率估计。当输入值趋近于正无穷大时输出值趋近于1当输入值趋近于负无穷大时输出值趋近于0。因此logistic函数常用于二分类问题将输出值解释为概率值可以用于预测样本属于某一类的概率。在神经网络中logistic函数的引入可以引入非线性特性使得网络能够学习更加复杂的模式和表示。 3. 线性层算子 Linear class Linear(nn.Module):def __init__(self, input_size, output_size):super(Linear, self).__init__()self.params {}self.params[W] nn.Parameter(torch.randn(input_size, output_size, requires_gradTrue))self.params[b] nn.Parameter(torch.randn(1, output_size, requires_gradTrue))self.grads {}self.inputs Nonedef forward(self, inputs):self.inputs inputsoutputs torch.matmul(inputs, self.params[W]) self.params[b]return outputs Linear类是一个自定义的线性层继承自nn.Module 它具有两个参数input_size和output_size分别表示输入和输出的大小。在初始化时创建了两个参数W和b分别代表权重和偏置都是可训练的张量并通过nn.Parameter进行封装。 params和grads是字典类型的属性用于存储参数和梯度inputs是一个临时变量用于存储输入。forward方法实现了前向传播的逻辑利用输入和参数计算输出。 4. 两层的前馈神经网络MLP class MLP(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(MLP, self).__init__()self.fc1 Linear(input_size, hidden_size)self.fc2 Linear(hidden_size, output_size)def forward(self, x):z1 self.fc1(x)a1 logistic(z1)z2 self.fc2(a1)a2 logistic(z2)return a2 初始化时创建了两个线性层Linear对象fc1和fc2forward方法实现了整个神经网络的前向传播过程 输入x首先经过第一层线性层fc1然后通过logistic函数进行激活再经过第二层线性层fc2最后再经过一次logistic函数激活并返回最终的输出。 5. 模型训练 input_size, hidden_size, output_size 10, 5, 2 net MLP(input_size, hidden_size, output_size) output net(input) print(output) 定义了三个变量input_size、hidden_size和output_size分别表示输入大小、隐藏层大小和输出大小。创建了一个MLP对象net并将输入input传入模型进行前向计算得到输出output。最后将输出打印出来。 6. 代码整合 # 导入必要的工具包 import torch from torch import nn# 线性层算子请一定注意继承自 nn. Module, 这会帮你解决许多细节上的问题 class Linear(nn.Module):def __init__(self, input_size, output_size):super(Linear, self).__init__()self.params {}self.params[W] nn.Parameter(torch.randn(input_size, output_size, requires_gradTrue))self.params[b] nn.Parameter(torch.randn(1, output_size, requires_gradTrue))self.grads {}self.inputs Nonedef forward(self, inputs):self.inputs inputsoutputs torch.matmul(inputs, self.params[W]) self.params[b]return outputs# 实现一个两层的前馈神经网络 class MLP(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(MLP, self).__init__()self.fc1 Linear(input_size, hidden_size)self.fc2 Linear(hidden_size, output_size)def forward(self, x):z1 self.fc1(x)a1 logistic(z1)z2 self.fc2(a1)a2 logistic(z2)return a2# Logistic 函数 def logistic(z):return 1.0 / (1.0 torch.exp(-z))input torch.ones((1, 10)) input_size, hidden_size, output_size 10, 5, 2 net MLP(input_size, hidden_size, output_size) output net(input) print(output)
http://www.sadfv.cn/news/113164/

相关文章:

  • wordpress 站群模板做企业网站设计与实现
  • 企业营销型网站的内容展示型网站建设标准
  • 青岛外贸建设网站制作装修设计图免费软件
  • 专业商城网站制作公司个人免费网站建站排名
  • 京东网站建设案例大气手机企业网站
  • 小说网站开发业务逻辑做wish如何利用数据网站
  • 如何做网站霸屏国外网站建设官网
  • 怎么做论坛的网站吗在屈臣氏做网站运营
  • 怎么建设自己淘宝网站电脑建立网站平台
  • 两学一做网站注册做网站还要维护吗
  • 网站seo优化方法中关村在线官网首页
  • 做ui的网站有哪些内容ico交易网站怎么做
  • 郑州网站设计多少钱广州档案馆建设网站
  • 网站成本费用设计页面图片
  • 对网站的赏析导入表格数据做地图网站
  • 桐城58网站在那里做wordpress 弹出视频播放
  • 网站建设中 动画百度推广收费标准
  • 企业官方网站开发如何入账廊坊手机网站建设
  • 自己编程做网站翡翠原石网站首页怎么做
  • 青海网站维护网络科技工作室起名
  • 发布企业信息的网站剪辑培训班一般学费多少
  • 网站的站点地图怎么做湖南视频网站建设
  • 自助建站免费搭建个人网站国内服务器做彩票网站安全吗
  • 做网站排名的公司有哪些app拉新渠道
  • 网站开发作为固定资产怎么摊销怎样推广小程序平台
  • 网站预约挂号怎么做平易云 网站建设
  • seo01网站设计网站策划书
  • 网站开发和后台维护微信开发网站开发未来前景
  • 大足网站设计电商平台的营销策略
  • 个人注册网站怎么注册查企业法人信息查询平台