当前位置: 首页 > news >正文

网站申请专利网站常用字体大小

网站申请专利,网站常用字体大小,wordpress 调用page,微信最好用的营销软件《博主简介》 小伙伴们好#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】#xff0c;共同学习交流~ #x1f44d;感谢小伙伴们点赞、关注#xff01; 《------往期经典推…《博主简介》 小伙伴们好我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源可关注公-仲-hao:【阿旭算法与机器学习】共同学习交流~ 感谢小伙伴们点赞、关注 《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】 二、机器学习实战专栏【链接】已更新31期欢迎关注持续更新中~~ 三、深度学习【Pytorch】专栏【链接】 《------正文------》 基本功能演示 摘要安全帽检测在日常生活和工作中具有重要的意义。佩戴安全帽是预防头部受伤的有效手段尤其在建筑工地、工厂、矿山等高风险环境中佩戴安全帽对于保障人身安全至关重要。本文基于YOLOv8深度学习框架通过7581张图片训练了一个进行人员是否佩戴安全帽的目标检测模型准确率高达0.95。并基于此模型开发了一款带UI界面的安全帽检测系统可用于实时检测人员是否有佩戴安全帽更方便进行功能的展示。该系统是基于python与PyQT5开发的支持图片、视频以及摄像头进行目标检测并保存检测结果。本文提供了完整的Python代码和使用教程给感兴趣的小伙伴参考学习完整的代码资源文件获取方式见文末。 文章目录 基本功能演示前言一、软件核心功能介绍及效果演示软件主要功能1图片检测演示2视频检测演示3摄像头检测演示4保存图片与视频检测结果 二、模型的训练、评估与推理1.YOLOv8的基本原理2. 数据集准备与训练3. 训练结果评估4. 检测结果识别 【获取方式】结束语 点击跳转至文末《完整相关文件及源码》获取 前言 安全帽检测在日常生活和工作中具有重要的意义。佩戴安全帽是预防头部受伤的有效手段尤其在建筑工地、工厂、矿山等高风险环境中佩戴安全帽对于保障人身安全至关重要。然而在实际生活中我们经常会遇到一些人员未佩戴安全帽的情况这不仅增加了他们自身的安全风险还可能对周围人造成潜在的安全隐患。 安全帽检测的应用场景非常广泛主要包括以下几个方面 建筑工地在建筑工地上工人需要佩戴安全帽以保护头部免受坠落物、碰撞等意外伤害。通过使用安全帽检测软件可以实时监控工人是否佩戴安全帽提高工地安全管理水平。 工厂与矿山在工厂和矿山等高风险环境中员工同样需要佩戴安全帽。安全帽检测软件可以帮助企业管理人员及时发现未佩戴安全帽的员工及时进行提醒和教育降低事故发生的风险。 交通执法在交通执法过程中执法人员可以使用安全帽检测软件对驾驶员是否佩戴安全帽进行快速、准确的判断提高执法效率。 教育培训在安全生产教育培训中安全帽检测软件可以作为一种教学辅助工具帮助学员更好地理解佩戴安全帽的重要性和方法。 总之安全帽检测在保障人们生命财产安全方面发挥着重要作用通过使用相关软件我们可以更加高效地管理和维护各类场所的安全秩序。 博主通过搜集人员是否佩戴安全帽的相关数据图片根据YOLOv8的目标检测技术基于python与Pyqt5开发了一款界面简洁的人员安全帽检测系统可支持图片、视频以及摄像头检测同时可以将图片或者视频检测结果进行保存。 软件基本界面如下图所示 一、软件核心功能介绍及效果演示 软件主要功能 1. 可进行人员佩戴安全帽与未戴安全帽两种状态的目标检测 2. 支持图片、视频及摄像头进行检测同时支持图片的批量检测 3. 界面可实时显示目标位置、目标总数、置信度、用时等信息; 4. 支持图片或者视频的检测结果保存 1图片检测演示 点击图片图标选择需要检测的图片或者点击文件夹图标选择需要批量检测图片所在的文件夹操作演示如下 点击目标下拉框后可以选定指定目标的结果信息进行显示。 点击保存按钮会对视频检测结果进行保存存储路径为save_data目录下。 注1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。 单个图片检测操作如下 批量图片检测操作如下 2视频检测演示 点击视频图标打开选择需要检测的视频就会自动显示检测结果。点击保存按钮会对视频检测结果进行保存存储路径为save_data目录下。 3摄像头检测演示 点击摄像头图标可以打开摄像头可以实时进行检测再次点击摄像头图标可关闭摄像头。 4保存图片与视频检测结果 点击保存按钮后会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。 二、模型的训练、评估与推理 1.YOLOv8的基本原理 YOLOv8是一种前沿的目标检测技术它基于先前YOLO版本在目标检测任务上的成功进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数可以在从 CPU 到 GPU 的各种硬件平台上运行。 其主要网络结构如下 2. 数据集准备与训练 通过网络上搜集关于安全帽的各类图片并使用LabelMe标注工具对每张图片中的目标边框Bounding Box及类别进行标注。一共包含7581张图片其中训练集包含6064张图片验证集包含1517张图片部分图像及标注如下图所示。 图片数据的存放格式如下在项目目录中新建datasets目录同时将跌倒检测的图片分为训练集与验证集放入helmetData目录下。 同时我们需要新建一个data.yaml文件用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时会读取该文件的信息用于进行模型的训练与验证。data.yaml的具体内容如下 train: E:\MyCVProgram\HelmetDetection\datasets\helmetData\train # train images (relative to path) 128 images val: E:\MyCVProgram\HelmetDetection\datasets\helmetData\val # val images (relative to path) 128 images test: # val images (optional)# number of classes nc: 2# Classes names: [Helmet, NoHelmet]注train与val后面表示需要训练图片的路径建议直接写自己文件的绝对路径。 数据准备完成后通过调用train.py文件进行模型训练epochs参数用于调整训练的轮数batch参数用于调整训练的批次大小【根据内存大小调整最小为1】代码如下 # 加载模型 model YOLO(yolov8n.pt) # 加载预训练模型 # Use the model if __name__ __main__:# Use the modelresults model.train(datadatasets/helmetData/data.yaml, epochs250, batch4) # 训练模型# 将模型转为onnx格式# success model.export(formatonnx)3. 训练结果评估 在深度学习中我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失定位损失(box_loss)、分类损失(cls_loss)和动态特征损失dfl_loss在训练结束后可以在runs/目录下找到训练过程及结果文件如下所示 各损失函数作用说明 定位损失box_loss预测框与标定框之间的误差GIoU越小定位得越准 分类损失cls_loss计算锚框与对应的标定分类是否正确越小分类得越准 动态特征损失dfl_lossDFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时目标框需要缩放到特征图尺度即除以相应的stride并与预测的边界框计算Ciou Loss同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分通过计算DFLLoss可以更准确地调整预测框的位置提高目标检测的准确性。 本文训练结果如下 我们通常用PR曲线来体现精确率和召回率的关系本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积m表示平均后面的数表示判定iou为正负样本的阈值。mAP.5表示阈值大于0.5的平均mAP可以看到本文模型两类目标检测的mAP0.5已经达到了0.94以上平均值为0.946结果还是很不错的。 4. 检测结果识别 模型训练完成后我们可以得到一个最佳的训练结果模型best.pt文件在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。 图片检测代码如下 # 所需加载的模型目录 path models/best.pt # 需要检测的图片地址 img_path TestFiles/000030.jpg# 加载预训练模型 # conf 0.25 object confidence threshold for detection # iou 0.7 intersection over union (IoU) threshold for NMS model YOLO(path, taskdetect) # model YOLO(path, taskdetect,conf0.5)# 检测图片 results model(img_path) res results[0].plot() cv2.imshow(YOLOv8 Detection, res) cv2.waitKey(0)执行上述代码后会将执行的结果直接标注在图片上结果如下 以上便是关于此款安全帽检测系统的原理与代码介绍。基于此模型博主用python与Pyqt5开发了一个带界面的软件系统即文中第二部分的演示内容能够很好的支持图片、视频及摄像头进行检测同时支持检测结果的保存。 关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件均已打包上传感兴趣的小伙伴可以通过下载链接自行获取。 【获取方式】 关注下方名片G-Z-H【阿旭算法与机器学习】回复【软件】即可获取下载方式 本文涉及到的完整全部程序文件包括python源码、数据集、训练代码、UI文件、测试图片视频等见下图获取方式见文末 注意该代码基于Python3.9开发运行界面的主程序为MainProgram.py其他测试脚本说明见上图。为确保程序顺利运行请按照程序运行说明文档txt配置软件运行所需环境。 关注下方名片GZH:【阿旭算法与机器学习】回复【软件】即可获取下载方式 结束语 以上便是博主开发的基于YOLOv8深度学习的安全帽目标检测系统的全部内容由于博主能力有限难免有疏漏之处希望小伙伴能批评指正。 关于本篇文章大家有任何建议或意见欢迎在评论区留言交流 觉得不错的小伙伴感谢点赞、关注加收藏哦
http://www.sadfv.cn/news/286537/

相关文章:

  • 怎么做网站后期推广平面设计接单软件
  • 怎么建设一个外国网站榆林免费做网站公司
  • 那个网站做租赁好两个wordpress数据同步
  • 好的建筑设计网站推荐建站平台功能结构图
  • 白酒营销网站wordpress单号管理系统
  • 郑州做食用菌配送的网站做网站算 自由职业者
  • 互联网情况下做企业网站的有点企业管理培训课程感想
  • 彩票网站搭建 做网站济南建设银行网站
  • 珠宝商城网站设计重庆网站设计哪家公司好
  • 大型网站快速排名百度引擎入口
  • 企业如何在自己的网站上做宣传小程序代理加盟有哪些大品牌
  • 淘宝二官方网站是做啥的局网站建设意见
  • 旅游网站后台管理系统电商网站建设目的
  • 浅谈全球五金网电子商务网站建设app开发费用大概多少
  • wordpress获取文章图片wordpress 数据库优化插件
  • 汕头模板做网站dw手机网站建设
  • 做图赚钱的网站有哪些aws网站建设
  • 网站建设pdf下载中英文版网站是怎么做的
  • 德州市建设小学网站公司做网站的优势
  • 网站维护一年多少钱新手学做网站pdf下载
  • 网络优化工程师为什么都说坑人杭州网站推广与优化
  • 做网站一次付费人才招聘网站开发 源代码
  • 南宁五象新区建设投资集团网站金湖建设局网站
  • 国外 作品集 网站品牌设计公司哪家好
  • php在电子商务网站建设中的应用研究 戴书浩南宁微信网站制作
  • 营销型网站建站推广温州网站建设方案书
  • 做自动发卡密网站的教程小城镇建设的网站
  • 网站建设需要服务器空间做网站经营流量
  • 北滘禅城网站建设移动网站模板下载
  • 品牌网站建设找顺的杭州seo网站推广软件