当前位置: 首页 > news >正文

导航网站的建设wordpress不同分类不同模板

导航网站的建设,wordpress不同分类不同模板,马鞍山 做网站,无锡网站建设推荐智勇参考书籍#xff1a;8.6. 循环神经网络的简洁实现 — 动手学深度学习 2.0.0 documentation 参考视频#xff1a;54 循环神经网络 RNN【动手学深度学习v2】_哔哩哔哩_bilibili 一.介绍 循环神经网络RNN#xff08;Recurrent Neural Network #xff09;是一类广泛应用于序列… 参考书籍8.6. 循环神经网络的简洁实现 — 动手学深度学习 2.0.0 documentation 参考视频54 循环神经网络 RNN【动手学深度学习v2】_哔哩哔哩_bilibili 一.介绍 循环神经网络RNNRecurrent Neural Network 是一类广泛应用于序列数据建模和处理的神经网络模型。相比于传统的前馈神经网络RNN在处理序列数据时引入了时间维度的循环连接使得网络能够保持对先前信息的记忆和上下文依赖。 RNN的一个关键特点是其内部的循环结构允许信息在网络中进行传递和交互。在RNN中每个时间步的输入不仅包括当前时间步的输入数据还包括前一时间步的隐藏状态hidden state。隐藏状态可以看作是网络对过去观察的记忆它会被传递到下一个时间步并与当前输入一起用于计算当前时间步的输出和隐藏状态。 RNN可以灵活地处理不定长度的序列数据并且能够捕捉序列中的时间依赖关系。这使得RNN广泛应用于自然语言处理NLP、语音识别、机器翻译、时间序列预测等任务。然而传统的RNN在处理长期依赖关系时可能会遭遇梯度消失或梯度爆炸等问题限制了其在处理长序列任务中的表现。 二.RNN结构 首先看一个简单的循环神经网络如它由输入层、一个隐藏层和一个输出层组成 参看博文史上最详细循环神经网络讲解RNN/LSTM/GRU - 知乎 不看W的话上面那幅图展开就是全连接神经网络其中X是一个向量也就是某个字或词的特征向量作为输入层如上图也就是3维向量U是输入层到隐藏层的参数矩阵在上图中其维度就是3X4S是隐藏层的向量如上图维度就是4V是隐藏层到输出层的参数矩阵在上图中就是4X2O是输出层的向量在上图中维度为2。 注意: 1. 这里的W,U,V在每个时刻都是相等的(权重共享). 2. 隐藏状态可以理解为:  Sf(现有的输入过去记忆总结)  三.RNN的反向传播 参考博客深度学习之RNN(循环神经网络)_笨拙的石头的博客-CSDN博客 四.RNN存在的问题  以下是 RNN 存在的一些问题以及其原因 长期依赖性问题RNN 在处理长序列时往往难以捕捉到序列中较远位置之间的依赖关系。这是因为 RNN 的隐藏状态即记忆通过不断迭代的方式传递长期依赖的信息在传递过程中会逐渐衰减导致难以有效地捕捉到远距离的依赖。 梯度消失和梯度爆炸问题在 RNN 的训练过程中反向传播算法通过计算梯度来更新模型参数。然而在 RNN 中梯度信息需要通过时间步展开的过程进行反向传播这导致梯度在时间维度上呈指数级衰减或爆炸。梯度消失/爆炸会导致模型难以收敛或训练过程不稳定。 训练速度慢由于 RNN 的序列依赖性每个时间步的计算都需要依次进行难以并行化。这导致 RNN 的训练速度相对较慢尤其是在处理长序列时。 为了解决这些问题研究人员提出了一些改进的 RNN 模型其中最常见的是长短期记忆网络LSTM和门控循环单元GRU。 LSTM 和 GRU对于梯度消失或者梯度爆炸的问题处理方法主要是: 对于梯度消失: 由于它们都有特殊的方式存储”记忆”那么以前梯度比较大的”记忆”不会像简单的RNN一样马上被抹除因此可以一定程度上克服梯度消失问题。 对于梯度爆炸:用来克服梯度爆炸的问题就是gradient clipping也就是当你计算的梯度超过阈值c或者小于阈值-c的时候便把此时的梯度设置成c或-c。  五.实现 import torch from torch import nn from torch.nn import functional as F from d2l import torch as d2lbatch_size, num_steps 32, 35 train_iter, vocab d2l.load_data_time_machine(batch_size, num_steps) 5.1定义模型 num_hiddens 256 rnn_layer nn.RNN(len(vocab), num_hiddens) state torch.zeros((1, batch_size, num_hiddens)) state.shape X torch.rand(size(num_steps, batch_size, len(vocab))) Y, state_new rnn_layer(X, state) Y.shape, state_new.shape 为一个完整的循环神经网络模型定义了一个RNNModel类。 注意rnn_layer只包含隐藏的循环层我们还需要创建一个单独的输出层。 #save class RNNModel(nn.Module):循环神经网络模型def __init__(self, rnn_layer, vocab_size, **kwargs):super(RNNModel, self).__init__(**kwargs)self.rnn rnn_layerself.vocab_size vocab_sizeself.num_hiddens self.rnn.hidden_size# 如果RNN是双向的之后将介绍num_directions应该是2否则应该是1if not self.rnn.bidirectional:self.num_directions 1self.linear nn.Linear(self.num_hiddens, self.vocab_size)else:self.num_directions 2self.linear nn.Linear(self.num_hiddens * 2, self.vocab_size)def forward(self, inputs, state):X F.one_hot(inputs.T.long(), self.vocab_size)X X.to(torch.float32)Y, state self.rnn(X, state)# 全连接层首先将Y的形状改为(时间步数*批量大小,隐藏单元数)# 它的输出形状是(时间步数*批量大小,词表大小)。output self.linear(Y.reshape((-1, Y.shape[-1])))return output, statedef begin_state(self, device, batch_size1):if not isinstance(self.rnn, nn.LSTM):# nn.GRU以张量作为隐状态return torch.zeros((self.num_directions * self.rnn.num_layers,batch_size, self.num_hiddens),devicedevice)else:# nn.LSTM以元组作为隐状态return (torch.zeros((self.num_directions * self.rnn.num_layers,batch_size, self.num_hiddens), devicedevice),torch.zeros((self.num_directions * self.rnn.num_layers,batch_size, self.num_hiddens), devicedevice)) 5.2训练与预测 device d2l.try_gpu() net RNNModel(rnn_layer, vocab_sizelen(vocab)) net net.to(device) d2l.predict_ch8(time traveller, 10, net, vocab, device) 结果time travellerzzzazzzzzz 很明显这种模型根本不能输出好的结果。 接下来我们使用 8.5节中 定义的超参数调用train_ch8并且使用高级API训练模型。  num_epochs, lr 500, 1 d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device) 结果
http://www.yutouwan.com/news/58046/

相关文章:

  • 网站设计与优化html5网站开发视频
  • 网站开发前端和后端怎么连接河南网站建设多少钱
  • 汽车网站排名查询宠物网页设计模板
  • 昆山网站建设费用城市建设理论研究收录网站
  • 重庆官方网站查询系统企业注册成立网址
  • wordpress企业站源码杭州免费自助建站模板
  • 个人做淘宝客网站好做吗东莞网络优化
  • 广东省建设教育协会官方网站电子展厅
  • 影视网站建设平台郑州百度推广外包
  • 潍坊网站建设首荐创美网络怎么做品牌推广和宣传
  • 检察院门户网站建设网页布局设计说明
  • 自贡住房和城乡建设厅网站网站怎么做切换图片
  • 什么是展示型网站建设网站如何做超级链接
  • 接做施工图的网站seo推广优化平台
  • 网站建设要求卖货到海外的免费平台
  • asp网站配置典型的网站开发人员
  • 沈阳做公司网站的公司无锡企业网站设计公司
  • 工作做ppt课件的网站2000个免费货源网站
  • 网站建设淘宝模板宁波企业seo外包
  • 怎么筛选一家做网站做的好的公司重庆网站建设优斗士
  • 响应式网站开发哪家好设计精美的中文网站
  • 无锡公司建立网站做跨境的网站有哪些
  • 网站建设能解决哪些问题大连甘井子区地图
  • 西安网站排名优化做效果图网站有哪些
  • 微网站缺点网站重定向怎么做
  • 企业网站建设需要哪些步骤科技部网站
  • 视频网站开发教程我花钱买了一个函授本科
  • app网站建设需要什么软件最有性价比的网站建设
  • 网站建设技术架构和语言网站建设过程与思路
  • 推广app网站企业网站设计报名