当前位置: 首页 > news >正文

网站收录了被人为删了怎么办宁波论坛网

网站收录了被人为删了怎么办,宁波论坛网,中国建筑人才网官网登录,积分商城平台hhsearch 是 HMM-HMM#xff08;Hidden Markov Model to Hidden Markov Model#xff09;比对方法的一部分#xff0c;属于 HMMER 软件套件。它用于进行蛋白质序列的高效比对#xff0c;特别适用于检测远缘同源性。 以下是 hhsearch 的一些主要特点和用途#xff1a; HMM…hhsearch 是 HMM-HMMHidden Markov Model to Hidden Markov Model比对方法的一部分属于 HMMER 软件套件。它用于进行蛋白质序列的高效比对特别适用于检测远缘同源性。 以下是 hhsearch 的一些主要特点和用途 HMM-HMM比对 hhsearch 使用隐藏马尔可夫模型HMM来表示蛋白质家族的模型。与传统的序列-序列比对方法不同HMM-HMM比对考虑了氨基酸残基的多序列信息使得在比对中能够更好地捕捉蛋白质家族的模式和结构。 检测远缘同源性 hhsearch 的一个主要优势是其能够检测到相对远离的同源关系。它在比对中引入了更多的信息从而提高了对远缘同源蛋白的发现能力。 灵敏度和特异性 hhsearch 的设计旨在在维持高灵敏度的同时减少假阳性的比对。这使得它在寻找结构和功能相似性时更为可靠。 数据库搜索 用户可以使用 hhsearch 在大型蛋白质数据库中搜索与给定蛋白质序列相似的蛋白质。 Library to run HHsearch from Python.import glob import os import subprocess from typing import Sequence, Optional, List, Iterable from absl import logging import contextlib import tempfile import dataclasses import contextlib import time import shutil import recontextlib.contextmanager def timing(msg: str):logging.info(Started %s, msg)tic time.time()yieldtoc time.time()logging.info(Finished %s in %.3f seconds, msg, toc - tic)dataclasses.dataclass(frozenTrue) class TemplateHit:Class representing a template hit.index: intname: straligned_cols: intsum_probs: Optional[float]query: strhit_sequence: strindices_query: List[int]indices_hit: List[int]contextlib.contextmanager def tmpdir_manager(base_dir: Optional[str] None):Context manager that deletes a temporary directory on exit.tmpdir tempfile.mkdtemp(dirbase_dir)try:yield tmpdirfinally:shutil.rmtree(tmpdir, ignore_errorsTrue)def parse_hhr(hhr_string: str) - Sequence[TemplateHit]:Parses the content of an entire HHR file.lines hhr_string.splitlines()# Each .hhr file starts with a results table, then has a sequence of hit# paragraphs, each paragraph starting with a line No hit number. We# iterate through each paragraph to parse each hit.block_starts [i for i, line in enumerate(lines) if line.startswith(No )]hits []if block_starts:block_starts.append(len(lines)) # Add the end of the final block.for i in range(len(block_starts) - 1):hits.append(_parse_hhr_hit(lines[block_starts[i]:block_starts[i 1]]))return hitsdef _parse_hhr_hit(detailed_lines: Sequence[str]) - TemplateHit:Parses the detailed HMM HMM comparison section for a single Hit.This works on .hhr files generated from both HHBlits and HHSearch.Args:detailed_lines: A list of lines from a single comparison section between 2sequences (which each have their own HMMs)Returns:A dictionary with the information from that detailed comparison sectionRaises:RuntimeError: If a certain line cannot be processed# Parse first 2 lines.number_of_hit int(detailed_lines[0].split()[-1])name_hit detailed_lines[1][1:]# Parse the summary line.pattern (Probab(.*)[\t ]*E-value(.*)[\t ]*Score(.*)[\t ]*Aligned_cols(.*)[\t ]*Identities(.*)%[\t ]*Similarity(.*)[\t ]*Sum_probs(.*)[\t ]*Template_Neff(.*))match re.match(pattern, detailed_lines[2])if match is None:raise RuntimeError(Could not parse section: %s. Expected this: \n%s to contain summary. %(detailed_lines, detailed_lines[2]))(_, _, _, aligned_cols, _, _, sum_probs, _) [float(x)for x in match.groups()]# The next section reads the detailed comparisons. These are in a human# readable format which has a fixed length. The strategy employed is to# assume that each block starts with the query sequence line, and to parse# that with a regexp in order to deduce the fixed length used for that block.query hit_sequence indices_query []indices_hit []length_block Nonefor line in detailed_lines[3:]:# Parse the query sequence lineif (line.startswith(Q ) and not line.startswith(Q ss_dssp) andnot line.startswith(Q ss_pred) andnot line.startswith(Q Consensus)):# Thus the first 17 characters must be Q query_name , and we can parse# everything after that.# start sequence end total_sequence_lengthpatt r[\t ]*([0-9]*) ([A-Z-]*)[\t ]*([0-9]*) \([0-9]*\)groups _get_hhr_line_regex_groups(patt, line[17:])# Get the length of the parsed block using the start and finish indices,# and ensure it is the same as the actual block length.start int(groups[0]) - 1 # Make index zero based.delta_query groups[1]end int(groups[2])num_insertions len([x for x in delta_query if x -])length_block end - start num_insertionsassert length_block len(delta_query)# Update the query sequence and indices list.query delta_query_update_hhr_residue_indices_list(delta_query, start, indices_query)elif line.startswith(T ):# Parse the hit sequence.if (not line.startswith(T ss_dssp) andnot line.startswith(T ss_pred) andnot line.startswith(T Consensus)):# Thus the first 17 characters must be T hit_name , and we can# parse everything after that.# start sequence end total_sequence_lengthpatt r[\t ]*([0-9]*) ([A-Z-]*)[\t ]*[0-9]* \([0-9]*\)groups _get_hhr_line_regex_groups(patt, line[17:])start int(groups[0]) - 1 # Make index zero based.delta_hit_sequence groups[1]assert length_block len(delta_hit_sequence)# Update the hit sequence and indices list.hit_sequence delta_hit_sequence_update_hhr_residue_indices_list(delta_hit_sequence, start, indices_hit)return TemplateHit(indexnumber_of_hit,namename_hit,aligned_colsint(aligned_cols),sum_probssum_probs,queryquery,hit_sequencehit_sequence,indices_queryindices_query,indices_hitindices_hit,)def _get_hhr_line_regex_groups(regex_pattern: str, line: str) - Sequence[Optional[str]]:match re.match(regex_pattern, line)if match is None:raise RuntimeError(fCould not parse query line {line})return match.groups()def _update_hhr_residue_indices_list(sequence: str, start_index: int, indices_list: List[int]):Computes the relative indices for each residue with respect to the original sequence.counter start_indexfor symbol in sequence:if symbol -:indices_list.append(-1)else:indices_list.append(counter)counter 1class HHSearch:Python wrapper of the HHsearch binary.def __init__(self,*,binary_path: str,databases: Sequence[str],maxseq: int 1_000_000):Initializes the Python HHsearch wrapper.Args:binary_path: The path to the HHsearch executable.databases: A sequence of HHsearch database paths. This should be thecommon prefix for the database files (i.e. up to but not including_hhm.ffindex etc.)maxseq: The maximum number of rows in an input alignment. Note that thisparameter is only supported in HHBlits version 3.1 and higher.Raises:RuntimeError: If HHsearch binary not found within the path.self.binary_path binary_pathself.databases databasesself.maxseq maxseq#for database_path in self.databases:# if not glob.glob(database_path _*):# logging.error(Could not find HHsearch database %s, database_path)# raise ValueError(fCould not find HHsearch database {database_path})propertydef output_format(self) - str:return hhrpropertydef input_format(self) - str:return a3mdef query(self, a3m: str) - str:Queries the database using HHsearch using a given a3m.with tmpdir_manager() as query_tmp_dir:input_path os.path.join(query_tmp_dir, query.a3m)hhr_path os.path.join(query_tmp_dir, output.hhr)with open(input_path, w) as f:f.write(a3m)db_cmd []for db_path in self.databases:db_cmd.append(-d)db_cmd.append(db_path)cmd [self.binary_path,-i, input_path,-o, hhr_path,-maxseq, str(self.maxseq)] db_cmdprint(cmd:,cmd)logging.info(Launching subprocess %s, .join(cmd))process subprocess.Popen(cmd, stdoutsubprocess.PIPE, stderrsubprocess.PIPE)with timing(HHsearch query):stdout, stderr process.communicate()retcode process.wait()if retcode:# Stderr is truncated to prevent proto size errors in Beam.raise RuntimeError(HHSearch failed:\nstdout:\n%s\n\nstderr:\n%s\n % (stdout.decode(utf-8), stderr[:100_000].decode(utf-8)))with open(hhr_path) as f:hhr f.read()return hhrdef get_template_hits(self,output_string: str,input_sequence: str) - Sequence[TemplateHit]:Gets parsed template hits from the raw string output by the tool.del input_sequence # Used by hmmseach but not needed for hhsearch.return parse_hhr(output_string)def convert_stockholm_to_a3m (stockholm_format: str,max_sequences: Optional[int] None,remove_first_row_gaps: bool True) - str:Converts MSA in Stockholm format to the A3M format.descriptions {}sequences {}reached_max_sequences Falsefor line in stockholm_format.splitlines():reached_max_sequences max_sequences and len(sequences) max_sequencesif line.strip() and not line.startswith((#, //)):# Ignore blank lines, markup and end symbols - remainder are alignment# sequence parts.seqname, aligned_seq line.split(maxsplit1)if seqname not in sequences:if reached_max_sequences:continuesequences[seqname] sequences[seqname] aligned_seqfor line in stockholm_format.splitlines():if line[:4] #GS:# Description row - example format is:# #GS UniRef90_Q9H5Z4/4-78 DE [subseq from] cDNA: FLJ22755 ...columns line.split(maxsplit3)seqname, feature columns[1:3]value columns[3] if len(columns) 4 else if feature ! DE:continueif reached_max_sequences and seqname not in sequences:continuedescriptions[seqname] valueif len(descriptions) len(sequences):break# Convert sto format to a3m line by linea3m_sequences {}if remove_first_row_gaps:# query_sequence is assumed to be the first sequencequery_sequence next(iter(sequences.values()))query_non_gaps [res ! - for res in query_sequence]for seqname, sto_sequence in sequences.items():# Dots are optional in a3m format and are commonly removed.out_sequence sto_sequence.replace(., )if remove_first_row_gaps:out_sequence .join(_convert_sto_seq_to_a3m(query_non_gaps, out_sequence))a3m_sequences[seqname] out_sequencefasta_chunks (f{k} {descriptions.get(k, )}\n{a3m_sequences[k]}for k in a3m_sequences)return \n.join(fasta_chunks) \n # Include terminating newlinedef _convert_sto_seq_to_a3m(query_non_gaps: Sequence[bool], sto_seq: str) - Iterable[str]:for is_query_res_non_gap, sequence_res in zip(query_non_gaps, sto_seq):if is_query_res_non_gap:yield sequence_reselif sequence_res ! -:yield sequence_res.lower()if __name__ __main__:### 1. 准备输入数据## 输入序列先通过Jackhmmer多次迭代从uniref90MGnify数据库搜索同源序列输出的多序列比对文件如globins4.sto转化为a3m格式后再通过hhsearch从pdb数据库中找到同源序列input_fasta_file /home/zheng/test/Q94K49.fasta## input_sequencewith open(input_fasta_file) as f:input_sequence f.read()test_templates_sto_file /home/zheng/test/Q94K49_aln.stowith open(test_templates_sto_file) as f:test_templates_sto f.read()## sto格式转a3m格式test_templates_a3m convert_stockholm_to_a3m(test_templates_sto)hhsearch_binary_path /home/zheng/software/hhsuite-3.3.0-SSE2-Linux/bin/hhsearch### 2.类实例化# scop70_1.75文件名前缀scop70_database_path /home/zheng/database/scop70_1.75_hhsuite3/scop70_1.75pdb70_database_path /home/zheng/database/pdb70_from_mmcif_latest/pdb70#hhsuite数据库下载地址https://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/ ## 单一数据库#template_searcher HHSearch(binary_path hhsearch_binary_path,# databases [scop70_database_path])## 多个数据库database_lst [scop70_database_path, pdb70_database_path]template_searcher HHSearch(binary_path hhsearch_binary_path,databases database_lst) ### 3. 同源序列搜索## 搜索结果返回.hhr文件字符串templates_result template_searcher.query(test_templates_a3m)print(templates_result)## pdb序列信息列表template_hits template_searcher.get_template_hits(output_stringtemplates_result, input_sequenceinput_sequence)print(template_hits)
http://www.yutouwan.com/news/473810/

相关文章:

  • 旅游管理网站业务模块微信公众号小程序制作
  • 找工作哪个网站好58同城免费外贸自建站
  • 网站建设 小程序开发 营销推广网站前端跟后端怎么做
  • 网站建设请示报告软件开发工具自考
  • 公司网站是用什么软件做wordpress 如何登陆
  • 手机pc网站模板怎么在年报网站做简易注销
  • 岗贝路网站建设sem是什么电镜
  • 网站备案相关前置许可上海网站建设 劲晟
  • 石嘴山网站建设网络推广外包哪家好
  • 合肥网站制作公司有哪些公司icp备案号是什么意思
  • 建站套餐和定制网站的区别做网站的工具+论坛
  • 上海物流网站建设百度知道问答
  • 河北建设集团有限公司 信息化网站博客推广工具
  • 网站关键技术洛米原创wordpress瀑布流手机杂志主题loostrive
  • 加查网站建设网站建设设计猫和老鼠
  • 网站栏目做跳转上海加盟网网站建设
  • 网站免费正能量软件六安网站建设优化
  • 专业营销网站公司新闻资讯网站模板下载
  • 长沙做网站微联讯点不错做照片书网站好
  • 网站开发培训价格永久免费win云服务器
  • 云主机如何做网站WordPress查看主题源代码
  • 阿里云做网站怎么样网站反链如何做
  • 做python一个网站国家企业公示信息系统(全国)官网
  • seo建网站wordpress主动推送代码写在哪里
  • 一站式服务logo设计有没有专门做儿童房的网站
  • 微信小程序开发和网站开发的区别厦门建设局网站2018
  • 织梦 网站教程电商 网站 设计
  • 做商城网站需要多少钱新浪微博关联wordpress
  • 怎么黑掉织梦做的网站镇江网站制作咨询
  • 出售自己的网站公众号推广方法