当前位置: 首页 > news >正文

网站ui用什么做四川成都最大的网络科技公司

网站ui用什么做,四川成都最大的网络科技公司,上海闵行区租房价格,房天下搜房网官网一.引言 前面介绍了 GFP-GAN 的原理与应用#xff0c;其用于优化图像画质。本文关注另外一个相关的项目 Wave2lip#xff0c;其可以通过人物视频与自定义音频进行适配#xff0c;改变视频中人物的嘴型与音频对应。 二.Wave2Lip 简介 Wave2lip 研究 lip-syncing 以达到视频… 一.引言 前面介绍了 GFP-GAN 的原理与应用其用于优化图像画质。本文关注另外一个相关的项目 Wave2lip其可以通过人物视频与自定义音频进行适配改变视频中人物的嘴型与音频对应。 二.Wave2Lip 简介 Wave2lip 研究 lip-syncing 以达到视频匹配目标语音片段的目的。目前的作品擅长在训练阶段看到的特定人的静态图像或视频。然而它们无法准确地改变动态、无约束的谈话面部视频中的任意身份。通过学习强大的唇同步鉴别器来解决它们。接下来我们提出了新的、严格的评估基准以及在无约束视频中精确测量嘴唇同步的度量。对我们具有挑战性的基准进行了广泛的定量评估结果表明视频的唇同步准确性几乎和真正同步的一样好。 论文地址: https://arxiv.org/pdf/2008.10010.pdf  1.Wave2Lip 训练数据 训练中用到了LRS2 数据集该数据集由英国广播公司电视台的数千句口语组成。每句话的长度不超过100个字符。训练、验证和测试集根据广播日期进行划分。数据集统计数据如下表所示。 预训练集中的话语对应于部分句子和多个句子而训练集仅由单个完整句子或短语组成。预训练和训练之间有一些重叠。 2.Wave2Lip 训练目标 wav2lip 模型的训练由生成器和判别器共同组成。GAN 负责学习音频-图像之间的对应关系生成同步的嘴唇动作。判别器负责评估图像-音频的同步性。具体的音频会被处理为音频 chunk 并处理转换为梅尔频谱矩阵该矩阵常用于信号处理中的音频频谱特征视频则是会逐帧抽取转化为 [Channel、width、height] 的多通道矩阵。通过训练频谱矩阵与图像多通道矩阵的对应关系学习chunk 与视频帧中口型的对应关系不断地反馈训练以优化视频与音频的同步效果。 3.Wave2Lip 模型推理 wave2lip 实战中大致遵循下述流程下述流程扩展为整个视频图像帧即可实现视频与音频的嘴型对应 ◆ 解析视频文件 这里一般最常用的格式即为 mp4通过 cv2 库的 VideoCapture 解析视频文件并通过 video_stream 流式读取视频的每一帧更简单的你的视频可以是一张人物的 Face 图这样会将图像复制扩展为与音频匹配的帧数。 ◆ 音频文件解析 使用 audio 库处理音频文件为了统一这里会使用 ffmepg 将音频文件统一转换为 wav 格式。随后通过 melspectrogram 方法获取 wav 音频的梅尔频谱矩阵并将矩阵转换为多个 chunk。 ◆ 人脸识别模块 针对视频帧识别人脸位置对应的 coord 坐标因此 Wave2lip 实现中还需要一个 face-detect 的模型用于对每一帧图像中人脸进行定位。 ◆ GAN 生成 基于上面的人脸的图像通道数字矩阵与音频的 mel 频谱矩阵构造模型的输入通过调用 GAN 模型生成对应音频的嘴型图像。 ◆ 图像拼接与重建 将预测得到的 pred 和 coord 坐标结合替换原图中的人脸部分实现人脸与嘴型的替换。 三.Wave2lip 环境搭建 代码实现: https://github.com/Rudrabha/Wav2Lip 1.Package 安装 ◆ python 3.6 conda create -n wave2lip python3.6 conda activate wave2lip ◆ ffmpeg ffmpeg 主要用于音频文件转换为 wav 格式 sudo apt-get install ffmpeg ◆ requirements 下载 Wave2lip 对应的 github 项目安装对应的依赖 librosa0.7.0 numpy1.17.1 opencv-contrib-python4.2.0.34 opencv-python4.1.0.25 torch1.1.0 torchvision0.3.0 tqdm4.45.0 numba0.48 pip install -r requirements.txt ◆ face detection model 模型下载地址: 预训练模型 备用下载地址: 备用节点下载 下载好的 .pth 模型需要放置到项目对应的 face_detection/detection/sfd/s3fd.pth 路径下 ​ 2.模型 weights 下载 Wave2lip: Highly accurate lip-sync ​ README 中给出了 4 个模型 weights大小在 50M - 500M 之间其有各自不同的擅长有的擅长口型对应有的擅长图像质量。不过博主测试只有第一个模型可以跑通其他模型跑通的同学也欢迎在评论区一起交流。 四.Wave2lip X GFP-GAN 实战 1.参数配置 python inference.py --checkpoint_path ckpt --face video.mp4 --audio an-audio-source -- checkpoint_path 模型地址 -- face 要修改的视频也可以是静态图 -- audio 要适配的音频 其他参数:  -- pads 调整检测到的面部边界框。通常会带来更好的结果。 -- nosmooth 如果嘴巴位置错位或有伪影可能是过度平滑了人脸检测加入该参数重试。 -- resize_factor 修改缩放参数以获得较低分辨率的视频。因为原模型是在低分辨率人脸数据上训练的因此 720p 视频可能比 1080p 视频获得更好更逼真的效果。 还有一些参数可以参考 inference.py 的 args parse 模块这里有完整的参数解析。 2.Wave2lip 运行 为了方便我们将官方给的示例调整一下: #!/bin/bashckpt/data2/wav2lip/checkpoints/wav2lip.pth video/data2/wav2lip/video/zgl.jpg audio/data2/wav2lip/mp3/AutumnWillNotComeBack.mp3python inference.py --checkpoint_path $ckpt --face $video --audio $audio ◆ 视频选择 为了简化流程我们使用单一人物图像的 jpeg当然上传人物的 video.mp4 也可以但是需要保证每一帧都可以获取 face-detect 的结果否则程序会异常报错。 ​ ◆ 音频选择 AutumnWillNotComeBack.mp3相信 90 后的你一定不会陌生没错这就是 《秋天不回来》! ​运行命令后会显示音频的相关信息可以看到原始的 mp4 格式已经处理为 wav处理命令为: command ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}.format(args.audio, temp/result.avi, args.outfile) subprocess.call(command, shellplatform.system() ! Windows) ◆ 输出结果 输出会通过 cv2.VideoWriter 写入对应的 output 目录下面为生成视频的相关信息 ​ 结合前面的介绍的 Nginx 服务我们可以直接在本机查看服务器上生成的视频非常的方便。 ​ Nginx 服务搭建:  Nginx - 本机读取服务器图像、视频 3.GFP-GAN 修复 由于我们原图的画质较低导致后续生成的视频也比较模糊。最简单的优化方案是在原始图片、视频的选择上选取更加清晰的版本。不过即便如此嘴部动作也会有一些模型和重影下面我们基于 GFP-GAN 对视频进行清晰度重建。 ◆ Video2PNG 通过 VideoFileClip 库处理视频共获取 FPS x Duration/s 帧图像。 def video_to_png(_file_name, _output):from moviepy.editor import VideoFileClip# Load your gifclip VideoFileClip(_file_name)print(fDuration: {clip.duration} FPS: {clip.fps})# Loop over clip framesfor i, frame in enumerate(clip.iter_frames()):from PIL import Imageimg Image.fromarray(frame)img.save(f{_output}/frame_{i}.png) ◆ GFP-GAN ReBuild GFP-GAN 服务搭建: Python - GFPGAN MoviePy 提高人物视频画质 python inference_gfpgan.py -i inputs/gif_imgs -o results -v 1.3 -s 2原视频 FPS 25共 2 min 120 s所以修复后生成 3k 帧图像。  ◆ PNG2Video 将上述 3000 帧图像的地址构造生成 image_files 并生成 ImageSequenceClip 对象通过 set_audio 的方法匹配 Wave2lip 生成视频的 Audio最终 write_videofile 输出 mp4。 def png_to_mp4(_file_name, input):# Load your gifclip VideoFileClip(_file_name)print(fDuration: {clip.duration} FPS: {clip.fps})# Loop over clip framesimage_files get_images(_file_name, input)new_clip ImageSequenceClip(image_files, fpsclip.fps)# 设置音频剪辑到图像序列剪辑image_sequence new_clip.set_audio(clip.audio)# 导出最终视频image_sequence.write_videofile(output_video.mp4, codeclibx264, audio_codecaac, fpsclip.fps) 可以看到修复后的视频人物的脸部和嘴部轮廓形状也更加清晰 五.总结 通过上面一系列的操作我们最终实现了  Wave2lip x GFP-GAN 的操作。不过 2min 的视频里人物的嘴型还是有飘忽不定和重影的问题一方面可能是由于原图、视频的画质质量过低导致其次古装人物的胡须与训练集中欧美人的脸部造型差异可能也是原因之一后续博主也会按 Github 给出的建议添加 --nosmooth 参数看看是否有好转。有问题欢迎大家评论区交流讨论 ~ Tips: Wave2lip 和 GFP-GAN 对应两套 conda 的 python 环境部署时需要区分。
http://www.yutouwan.com/news/269478/

相关文章:

  • 助企建站工作报告是组织进行沟通的有效渠道
  • 简单个人网站模板cms下载
  • 衡水建设网站首页智慧团建手机版
  • 做电商必备的八个软件梅州网站优化
  • 福州网站设计企业建站中国住房和城乡建设部网站注册中心
  • 内蒙古建设银行网站wordpress 说说
  • php网站培训如何提升网站营销力
  • 网站代运营 如何纳税微商城开发hg华网天下实惠
  • 企业网站建立如何做网站企划案
  • 网站开发机构如何搭建网络论坛平台
  • 安徽php网站建设广州安全教育平台登录
  • 淘客网站开发视频教程西安跨境电子商务平台网站
  • 网站建设微商城多少钱wordpress百度流量统计
  • 专业郑州做网站如何建设网页游戏网站
  • 做鞋子有什么好网站在上阿里云做网站
  • 做网站开发有前途么做违规网站
  • 爱网站关键词挖掘网页制作素材1001无标题
  • 直接做海报的网站西安市建设工程信息网截图
  • seo高手培训SEO网站布局优化
  • 网站商城建设方案网站建设的组织机构
  • 网站建立风格wordpress 浏览历史
  • 德赞网站建设网站制作网站建设与会展
  • 服饰工厂网站建设网站建设后应该干什么
  • 江西省建设厅官方网站国内外贸网站建设公司
  • 常德地区网站建设可以用vs做网站建设吗
  • 网站怎做百度代码统计wordpress和微信公众号互通
  • 网站做业务赚钱特网站建设
  • 温州网站建设服务中心洛阳恒凯做的网站有哪些
  • 网站换空间商什么意思wordpress single 主题
  • 兰州网站定制公司梅州基建