当前位置: 首页 > news >正文

旅游类网站策划建设_郑州做响应式网站

旅游类网站策划建设_,郑州做响应式网站,做网站实训报告,郑州建设网站有哪些来源#xff1a;数据简化DataSimp数据简化DataSimp导读#xff1a;UC伯克利教授StuartRussell人工智能基础概念与34个误区#xff0c;Russell是加州大学伯克利分校人工智能系统中心创始人兼计算机科学专业教授#xff0c;同时还是人工智能领域里「标准教科书」《人工智能数据简化DataSimp数据简化DataSimp导读UC伯克利教授StuartRussell人工智能基础概念与34个误区Russell是加州大学伯克利分校人工智能系统中心创始人兼计算机科学专业教授同时还是人工智能领域里「标准教科书」《人工智能一种现代方法》作者谷歌研究主管Peter Norvig也是该书作者。在这篇文章中他以QA的方式讲解了人工智能的未来以及常见的误解。希望国人真正懂得科学、技术是给谁用的、为了什么搞科技和制度舍本逐末要不得赶紧改正吧。深度 | 伯克利教授Stuart Russell人工智能基础概念与34个误区文|选自UC Berkely人工智能系统中心创始人兼计算机科学专业教授2016-11-211. 什么是人工智能是对让计算机展现出智慧的方法的研究。计算机在获得正确方向后可以高效工作在这里正确的方向意味着最有可能实现目标的方向用术语来说就是最大化效果预期。人工智能需要处理的任务包括学习、推理、规划、感知、语言识别和机器人控制等。常见误解「它是一个特定技术」。例如在二十世纪八十年代到九十年代人们经常会看到新闻报道中人工智能与基于规则的专家系统被混为一谈。现在人工智能经常会与多层卷积神经网络混淆。这有点像把物理和蒸汽机的概念搞混了。人工智能探究如何在机器中创造智能意识它不是在研究中产生的任何一个特定的技术。「这是一个特定类别的技术方法」。例如经常有人用符号化或逻辑化的方法将人工智能与「其他方法」相互比较如神经网络和遗传编程。人工智能不是一种方法它是一个课题。所有这些方法都是在对人工智能进行研究的产物。「这是一小群研究者的方向」。这个误解与前几个错误有关。一些作者使用「计算智能」指代几个特定的研究者群体如研究神经网络模糊逻辑和遗传算法的研究者。这是非常片面的因为这种分类让人工智能的研究陷入孤立的境地让研究成果不能得到广泛的讨论。「人工智能只是算法」。严格说来不算是误解人工智能的确包含算法也可粗略定义为程序它也包含计算机中其他的应用。当然人工智能系统需要处理的任务相比传统算法任务比如排序、算平方根复杂得多。2. 人工智能将如何造福人类文明的一切都是人类智慧的产物。在未来人工智能会将会扩展人类的智力这就像起重机让我们能够举起几百吨的重物飞机让我们很快飞到地球的另一端电话让我们在任何角落实时交流一样。如果人工智能被适当地设计它可以创造更多价值。常见误解「人工智能没有人性」。在很多反乌托邦幻想中人工智能会被用来控制大部分人类无论是通过监视机器人执法法律判决甚至控制经济。这都是未来可能出现的情况但首先它不会被大多数人接受。人们往往忽视人工智能可以让人类接触更多的知识消除人与人之间的语言隔阂解决无意义和重复的繁重任务。「人工智能将造成不平等」。毫无疑问自动化程度的提升将使财富集中到越来越少的人手里。但是现在如何使用人工智能的选择权在我们手里。例如人工智能可以促进协作让生产者与客户有更多交流它可以让个人和小组织在全球化的经济环境下独立运作摆脱对于特定大公司订单的依赖。3. 什么是机器学习它是人工智能的一个分支探索如何让计算机通过经验学习提高性能。常见误解「机器学习是一个新的领域它已经代替了人工智能的地位」。这种误解是最近机器学习热潮产生的副作用大量学生在之前没有接触过人工智能的情况下学习了机器学习课程。机器学习一直是人工智能的核心话题阿兰·图灵在二十世纪五十年代的论文中已经认为学习是通向人工智能最可行的途径。这一观点似乎是正确的人工智能最突出的早期成果Arthur Samuel 的跳棋程序就是使用机器学习构建的。「机器不能学习它们只能做程序员告诉它的事情」。这显然是错的程序员能够告诉机器如何学习。Samuel 是一个优秀的跳棋玩家但他的程序很快就通过学习超过了他。近年来机器学习的很多应用都需要大量数据来进行训练。4. 什么是神经网络神经网络是受生物神经元启发构建的计算系统。神经网络由许多独立的单元组成每个单元接收来自上一层单元的输入并将输出发送到下个单元「单元」不一定是单独的物理存在它们可以被认为是计算机程序的不同组成部分。单元的输出通常通过取输入的加权和并通过某种简单的非线性转型神经网络的关键特性是基于经验修改与单元之间的链接比较相关权重。常见误解「神经网络是一种新型计算机」。在实践中几乎所有的神经网络都运行在普通的计算机架构上。一些公司正在设计专用机器它们有时会被称作是「神经计算机」可以有效地运行神经网络但目前为止这类机器无法提供足够的优势值得花费大量时间去开发。「神经网络像大脑一样工作」。事实上生物神经元的工作方式比神经网络复杂得多自然界存在很多种不同的神经元神经元的连接可以随时间进行改变大脑中也存在其他的机制可以影响动物的行为。5. 什么是深度学习深度学习是一种特定形式的机器学习训练多层神经网络。深度学习近年来非常流行引领了图像识别和语音识别等领域的突破性进展。常见误解「深度学习是一个新领域已经代替了机器学习的地位」。事实上深度学习在神经网络研究者中间已经被讨论了超过二十年。最近深度学习的发展是由相对较小的算法改进以及大数据集模型和计算机硬件发展驱动的。6. 什么是强人工智能和弱人工智能「强人工智能」和「弱人工智能」概念是由 John Searle 最先提出的是他对人工智能研究方向的两个假设。弱人工智能假设机器可以通过编程展现出人类智能的水平。强人工智能则假设机器出现意识或者说机器思考和认知的方式可以用以前形容人类的方式来形容。常见误解「强人工智能是人类智力级别通用人工智能研究的方向」。这个解释具有代表性但这不是强/弱人工智能概念被提出时的本来意义。同样「弱人工智能」被认为是针对特定领域执行特定任务的人工智能研究如语音识别和推荐系统也称工具 AI。虽然没有人具有最终解释权但这种语义的转换可能会造成不必要的混乱。7. 什么是 AGIASI 和超级智能AGI 代表的是通用人工智能这个术语意在强调建立通用目的智能系统的雄心目标其应用的宽度至少能覆盖人类能解决任务。ASI 指的是人工超级智能远远超越人类智能的人工智能。更具体地说一个超级智能系统高质量决策能力要比人类强它能考虑更多的信息和进一步深入未来。常见误解「主流的人工智能研究者并不关心通用人工智能。」像语音识别这种细分领域的某些研究者主要关心的是其所在领域的具体目标其他一些研究者比较关心找到现有技术的商业应用。在我的影像里如学习、推理、和计划等细分领域的大多数人工智能研究者认为他们目前的研究工作有助于解决通用人工智能的子问题。「人类的智能是一种通用智能」。这种观点常被认为是显而易见不值得讨论但它却几乎回避了关于 AGI 的所有讨论。持有这种观点的人通常会认为通用智能就是人类能做到所有任务的能力。然而当然不存在人工不能做的人类工作所以人类能做已经存在的人类工作也没什么好惊讶的。难的是怎么定义那种完全独立于以人类为中心的价值观和偏见的宽度。所以我们只能说人类智能是某种程度上的通用智能人类能做人类能做的所有事情。另一种更有意义的说法是人类能做很多事情但目前为止这个问题还没有确切的答案。8. 什么是摩尔定律「摩尔定律」指的是多个相关的观察和预测能影响电路性能和密度。现代理解的「摩尔定律」是每一秒的操作次数以及每一美元所能买到的电脑性能将每隔 N 个月翻一倍以上N 大约是 18这一表述有些背离「摩尔定律」最初的定义。常见误解「摩尔定律是物理定律」。事实上摩尔定律只是一种关于技术进步的经验观察。没有什么规定摩尔定律会持续下去当然它也不可能无限持续下去。时钟速度的增加已经达到了顶峰目前价格/性能上的提升也来自于单个芯片上内核处理单元数量的上升。9. 摩尔定律能让我们预测出超级人工智能的到来吗不能。人工智能系统不能做的事情很多比如理解复杂的自然语言文本加速意味着在很多情况下得到的错误答案的速度也越快。超级智能需要在主要的概念突破。这些很难预测即便我们有了速度更快的机器也没啥用。常见误解「让机器更强大的意思是提升它们的智能」。这是人工智能的未来的讨论中的一个常见主题这个主题似乎建立在一个混乱的概念上我们使用「强大」来描述人类智力但是在描述计算机时用的「强大」的含义更加简单就是每秒操作的次数。10. 什么是机器 IQ没有机器 IQ 这种说法。某种程度上一个人在多个任务上的多种智慧能力是高度相关的人类可以说有 IQ但是研究者们对任意单一维度上的 IQ 定义有争议。另一方面任意给定的机器的各种能力之间都是不相关的一台机器能打败世界象棋冠军并不意味着它能玩的好别的棋类游戏。能赢得猜谜比赛的机器也无法回答「你叫什么名字」这样简单的问题。常见误解「根据摩尔定律机器 IQ 会不断上升」。既然根本不存在什么机器 IQ它也就不可能增长摩尔定律描述的仅仅是原始的计算吞吐量与是有存在执行任意特定任务的算法没有关系。11. 什么是智能爆炸「智能爆炸」这个术语是 I.J.Good 于 1965 年在其文章「Speculations Concerning theFirst Ultraintelligent Machine」中创造的。它指的是足够智能的机器能重复设计它自己的硬件和软件来创造出一个更加智能的机器的可能性这个过程会一直重复下去直到「人的智能被远远的甩在后面」。常见误解「一旦机器达到人类水平的智能智能爆炸就在所难免」。反过来虽然逻辑上是可行的但是让 N 代的机器设计出 N1 代的机器太难了。同样的道理我们造的机器可能在一些重要的方面成为超过人类但是在其他方面可能会落后于人类。在解决贫困、治疗癌症等重要问题上机器的能力肯定会比人类强而且不需要在人工智能研究上有大突破就能实现。12. 人工智能系统何时才能超过人类智力这是一个难以回答的问题。因为首先它假定这件事必然发生事实上它具有选择性假如人类选择不去发展这样的人工智能这件事就不太可能发生。第二「超过」假定智力是线性的而这不是真实情况机器在某些任务的处理上比人类更快而在更多放面则很糟糕。第三如果我们认为「通用的」智能是有用的我们就可以开发这样的机器但目前我们不知道它是不是有用的。宽泛地说实现这样的人工智能还需要很多技术突破而这些都是难以预测的大多数科学家认为这件事会在本世纪内发生。常见误解「它永远不会发生」。对技术突破进行预测是很难的。1933 年 9 月 11日Rutherford也许是那个时代最著名的核物理学家在英国科学促进年会上向人们宣布「任何想从原子变形过程中获取能源的努力都是徒劳的。」他在各种场合发表过许多类似言论大意都是表达使用原子能是不可能的结果第二天早上Leo Szilard发现了中子诱导链式反应并很快对核反应堆申请了专利。13. 人工智能系统现在能做什么人工智能的应用范围已经比几年前大很多了。从围棋、纸牌、简单的问答、从新闻中抓取信息、组合复杂的对象、翻译文字、识别语音、识别图像中的概念、到在「普通」交通条件下驾驶汽车不一而足。在很多情况下人工智能在你不知道的情况下发挥着作用如检测信用卡欺诈评估信用甚至在复杂的电子商务拍卖中投标。搜索引擎中的部分功能也是人工智能的简单形式。常见误解「像『下棋』这样的任务对机器来说和对人类来说是一样的」。这是一个错误的假设机器「掌握」一项技能的程度超过了人类。人类通过阅读和理解学会游戏规则通过观看棋局和下棋来提高水平。但典型的下棋程序没有这样的能力——将下棋规则编程让机器算法直接给出所有可能的下一步。机器无法「知道」人类所谓的规则目前新兴的强化学习方式改变了这一点。DeepMind 的人工智能系统可以学会很多种游戏它不知道自己在学习什么看起来也不太可能学会这些游戏的规则。「机器执行任务的方式和人类一样」。我们不知道人类思考问题的机制但这种机制与人工智能系统处理任务的方式看起来大不相同。例如下棋程序通过考虑当前棋局状态和下一步可能的序列比较结果考虑下一步而人类经常是先发现可能获得的优势然后继续考虑如何找到一系列方式来实现它。「如果机器可以做到任务 X那么它就可以做类似的所有任务了」。参见有关机器IQ 的问题机器目前还不能形成通用化的智能它们的功能通常局限于某一领域。14. 人工智能会对社会造成什么样的影响在可预见的未来中人工智能的各种应用将会改变社会形式。自动驾驶汽车现在已经在路上进行测试至少有一家公司承诺将在 2016 年内交货考虑到目前遇到的困难其他公司的态度则更为谨慎随着计算机视觉和机械腿设计的进化机器人非结构化环境正在变得更为实用——可能的应用范围包括农业和服务领域特别是对于老人和残疾人而言。最后随着机器能够理解人类语言搜索引擎和手机上的「个人助理」将会改变现有的人机交互方式它们可以回答问题整合信息提供建议并促进交流。人工智能还可能会对科学领域如系统生物学产生重大影响这些学科中信息的复杂性和数量一直令人望而却步。常见误解「机器人正在接管一切」。参见《人工智能的智力何时才能超过人类》人工智能中的绝大多数进步是基于任务处理的改进。当然从长远来看维持人类的控制很重要。15. 人工智能与机器人的发展会取代大量人类的工作吗一些研究比如 Frey 和 Osborne 在 2013 年的调查表明在未来美国将近一半的工作在自动化面前会变得很脆弱。其他作者比如 Bryjolfsson 和麦肯锡在 2011 年的工作表明这一变化已经开始了2008 年经济萧条之后就业率的缓慢恢复生产率与停滞不前的工资之间的差异化增加了自动化的进程。随着人工智能与机器人的持续发展更多的工作将受到影响看起来不可避免。大量的失业并不是必然的但这可能会造成经济结构的巨大转变需要想出组织工作与酬劳的新思路。常见误解「机器人的工作越多意味着人类工作越少」。工作不是零和zero-sum的由一对机器人协助的工人可能更具工作效率也因此需要更多这样的工人。没有机器人的帮助一些领域的工作由人类完成可能不具备经济效益或者一些工作单独的人或机器无法完成。同样就像涂刷匠的刷子与滚筒如果使用针尖大小的刷子一点一点的涂刷我们就雇不起涂刷匠来涂刷一整间屋子了。16. 什么是无人机自动武器杀人机器人无人机是由人远程控制的飞行器有些无人机可以携带武器通常是导弹这些武器的释放也是由人远程控制的。自动武器是可以自主选择和吸引攻击对象的装置。目前这类装置包括韩国非军事化区里的自动瞄准机枪和一些不同类型的船载反导弹系统。目前在技术上可以实现将无人飞机的控制员替换成完全自动的计算机系统以达到致命自主武器系统的要求。致命自主武器系统是日内瓦会议裁减军备议题的讨论主题。杀人机器人是对具有轮动能力和行走能力的武器的统称包括船飞行器以及人工智能的昆虫飞行器。常见误解「完全自主武器的出现还需要 20-30 年的研发」。得出这个预估时间的依据无从知晓但是 20-30 年的时间跨度有点夸大所需的研发时间长度。目前自主武器的研发已经在全世界内大范围的开展英国国防部已经宣称对于一些简单对抗如海上战役完全自动武器现在已经可以实施。17. 我们需要担心杀人机器人胡作非为或接管世界吗如果部署了自动化武器它们也会有士兵那样的难题有时难以分别朋友与敌人、平民与敌军。而且可能会有军事事故造成平民伤亡或者机器人受到干扰与网络攻击。也因为后者一些军事专家预测自动化武器可能需要封闭操作系统没有电子通讯。如果系统行为不准确的话这样做能防止有人凌驾于自动化控制器之上。但在可预见的未来自动化武器可能会变得很常见在有限的任务中被使用。但在全局规模上它们很难自己编程出计划。常见误解我们可以按下「关闭」按钮。「关闭」按钮会使得自动化武器在网络攻击面前变得很脆弱。这样的通信频道在战争中也是如此。此外通用智能系统会被赋予一项任务防止自己的「关闭」按钮被按下。18. 人工智能的「存在风险」是什么它是真的吗关于人工智能风险的早期警告曾是非常模糊的。I.J.Good 对于人工智能的可行性提出了自己的观点「只要机器能够聪明到告诉我们如何保持对它的控制。」人们普遍意识到在我们的星球上如果存在一个超级智能实体可能会出现恐慌但另一方面我们也都清楚更加聪明的机器会更加有用而且更加聪明不一定意味着邪恶。事实上论据很简单。假设超智能系统被设计成实现由人类设计者指定的某一目标并假设这一目标不完全符合人类的价值观人工智能形成的价值观如果有是非常难以确定的。任何充分有能力的智能系统将倾向于确保其自身的持续存在并且获取物理和计算资源——不是为了他们自己的目的而是为了更好地执行人类为它设定的任务。现在我们问题的本质是你所要求的不是你所得到的。NorbertWiener 是自动化和控制理论的先驱者他在 1960 年写道「如果我们使用——为达到某些目的——一些机器来代替我们做某些工作我们最好能够清楚它们的确在按我们的想法工作。」Marvin Minsky 举了让机器计算 pi 这个例子Nick Bostrom 则举了回形针的例子。对于人类而言这些目标是根据人类视角提出的这意味着计算机服务器或回形针覆盖整个银河系不是好的解决方案。一个具有能力的决策者——特别是能够通过互联网连接全球每块屏幕的智能——可能会对人类产生不可逆转的影响。幸运的是这个问题相对比较明确所以现在就可以开始解决。常见误解超智能机器将变得自发地产生意识、本能地变得邪恶或伤害人类。科幻小说作者通常假定上面这些一个或多个问题来设定机器与人类的对立面这样的假设完全是不必要的。我们人类发展人工智能系统那么为什么我们要制造出来毁灭自己呢有一些人类工智能「捍卫者」常常争辩道因为人类建立了人工智能系统那么完全没有理由来支持这样的假设即我们是在制造一个旨在毁灭人类的机器。这个没有抓住辩论要点即哪个是邪恶意图在设计者这一边还是代中间者这一边这是存在存亡威胁的先决条件这个问题也就是错误设定了对象。这将永远不会发生。19. 为什么人们会突然对人工智能如此担心从 2014 年开始媒体就定期地报道如 Stephen Hawking、 Elon Musk、 Steve Wozniak and Bill Gates 那样名人的对人工智能的担忧。这些报道通常引用那些最绝望话语并省略实质担心的深层原因通常就像「什么是人工智能现存风险」那样的问题。在许多情况下担忧就是在阅读 Nick Bostrom 的书籍超智能*Superintelligence*之后产生的。另外一些当下关心这个问题的潮流也是因为人工智能的发展正在加速。这种加速可能是很多因素的集合包括逐步完善的理论基础它连接了很多的人工智能领域成为一个统一的整体。还有学术实验室能产出达到能够应用并解决现实世界的实际问题在人工智能方向商业投资的急剧增加也作为。常见误解如果人们是担心超人工智能就在某个角落那么基本上人工智能研究者很少认为超智能机器就在我们周围某个角落。这并不暗示着我们应该等着直到这个问题变得很严重如果我们发现直径 10 英里的小行星将于 50 年后撞向地球我们难道能够不消灭它并声称「我们会在五年的时候去关注它」20. 人工智能在接下来的几十年里会取得怎样的进步这个领域好像并不要求人类级的通用人工智能能够达到成熟而制造一些可信赖的高质量的产品也许在下个十年内有能实现。这就包括了语音识别、从简单的实际材料中提炼信息、对物体和行为的视觉识别、日常事物的机器人操作和自动驾驶。努力提升质量和扩展文本与视频的理解系统能制造更强劲的家用机器人产生更为广泛有用的机器人它能展示常识知识系统一起学习并在遍历所有形式后表现得更好。还存在获取和组织科学知识的专业系统它能管理复杂假说并可能对分子生物学、系统生物学和制药方面产生重大的影响。我们也许也会看到它在社会科学和政策制定有相同的影响特别是在给它关于人类活动巨量的机器可读性数据之后并如果机器是很可靠有用的那么人们同样也需要机器去理解人类价值。公共和私人知识源也就是知道和推理真实世界的系统它不仅仅是数据的仓库它会成为社会的组成部分。21. 什么是「价值定位value alignment」它有什么要紧的价值定位Value alignment就是校准人机关系具体目标价值的任务所以机器最优选择大概来说就是无论做什么都是最大化人类的幸福感。如果没有价值定位那么超脱人类掌控的超智能机器的出现就是不可忽视的风险。常见误解「我们所有需要的就是阿西莫夫定律Asimovs laws」。阿西莫夫定律本质上就是一些条款它们给人类创造出各种故事情节提供灵感但是基本对约束机器人没有什么有用的信息因为它没有更多具体的细节。它们的基本结构为一组规则而不是效用函数这是很有问题的它们的词典式结构例如任何对人类的伤害是比所有机器人的损害还要严格重要地多意味着没有给不确定性或权衡留下空间。也许机器人只为了拍死一只在以后可能叮咬人类的蚊子会跳出悬崖毁灭了自己。另外它也许会锁上人类汽车的门因为坐车会提高人类受伤的可能性。最后基于最大化人类效用的方法对于第三条法则是没有必要的机器人自我保护因为机器人不保证自身的存在是不能为人类效用做出贡献的还会令其拥有者十分失望。22. 对于存在主义风险existential risk人工智能社区做了什么许多关于人工智能的存在主义风险的讨论都是处于人工智能社区主流之外的它们是从人工智能研究最初到最主要的反动力。在 2008 年的时候AAAI美国人工智能学会就举行了个座谈会来讨论这个问题。座谈会中期报告就指出了存在的一些长期问题并降低了一些人工智能对人类社会风险的想法。最近在 2015 年 1 月 Puerto Rico 由 Future of Life Institute 主办的会议上参会者和随后参加者共六千多人共同签署了一份公开信强烈呼吁应该有关注这些风险问题的研究和提出一个更加详细的研究议程。随后Elon Musk 为支持这方面的研究而拿出了 1000 万美元。另外Eric Horvitz 已经建立个期望追踪风险问题并在需要时给出政策建议的长期研究。最后还有AAAI 也已经建立了一个关注人工智能影响和伦理问题Impact of AIand Ethical Issues的常务委员会。常见误解「规约或控制研究是不可能的」。有些人辩称没办法避免消极后果因为研究进展是无法停止和规约的。实际上这种声称本身就是错误的在 1975 年关于基因重组的阿西洛马会议Asilomar Conference就成功地发起自愿活动中止了设计制造人类遗传性基因修饰并一直持续成为了国际准则。另外如果实现人类级的人工智能研究未加抑制这个是很可能出现的那么在方法上开始谨慎地研究确保人工智能系统在我们掌控下是十分重要的。23. 我能提供什么帮助吗如果你是一个人工智能研究者或对这方面感兴趣的经济学家、伦理学家、政治学者、未来主义者和律师从 2015 年波多黎各会议Puerto Rico conference在研究议程中就已经兴起了一个主题即在主要的人工智能会议上会举行相应的研讨会比如说 AAAI Fall 和 Spring Symposium series 等等。FHI、CSER、 FLI 和 MIRI 网站都有更多的信息。常见误解「完成这些是没什么困难的」。我们不管做什么都无法改变未来这些事都终将发生。也没有什么能离真相更近一点的我们不能预测未来因为我们正在创造未来这是我们集体的选择。-END-参考文献(116字)1. UC Berkely. 深度 | 伯克利教授Stuart Russell人工智能基础概念与34个误区.[EB/OL]机器之心, http://www.sohu.com/a/119499799_465975,2016-11-21未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能互联网和脑科学交叉研究机构。未来智能实验室的主要工作包括建立AI智能系统智商评测体系开展世界人工智能智商评测开展互联网城市云脑研究计划构建互联网城市云脑技术和企业图谱为提升企业行业与城市的智能水平服务。  如果您对实验室的研究感兴趣欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”
http://www.yutouwan.com/news/262496/

相关文章:

  • 上海网站制作顾adsense wordpress
  • 企业为什么要做建站建湖专业做网站
  • 网站开发 图片库品牌大气的网站设计
  • 威宁住房和城乡建设局网站怎样做网络推广营销
  • 网站建设模板元素是什么贵州专业网站建设公司哪家好
  • ps做简洁大气网站保定做网站电话
  • 合肥网络公司招聘网站seo源码
  • 网站开发武胜招聘龙华百度快速排名
  • 做百度推广网站被攻击门户网站模板源码
  • 静态网站做毕业设计网站外链接自己可以怎么做
  • 绵阳做手机网站汕头建设局网站
  • 网络科技官网网站建设微信开发者工具怎么使用
  • 广西住房建设厅网站什么软件可以做动画
  • 扬州学做网站培训多少钱一小时学会网站建设
  • 网站域名不备案吗濮阳新闻最新消息
  • 湖北洈水水利水电建设公司网站移动网站开发实训报告
  • 做数据ppt模板下载网站点开图片跳到网站怎么做
  • 制作微信网站模板免费下载杭州酒店团购网站建设
  • 东莞网站推广公司淘宝推广平台有哪些
  • 网站开发的背景与环境互联网创业项目怎么做
  • 百度搜不干净的东西白山网站seo
  • 百达翡丽手表网站最近高清中文在线国语字幕
  • 内容网站管理系统qq推广引流怎么做
  • 南山做网站公司电子商务网站建设的认识的心得
  • 网站建设软件是什么flash网站项目背景
  • 上海网站建设网站制作临沂网站建设哪家好
  • 织梦网站栏目营销自己的网站
  • 网站流量下降的原因温州通告最新
  • dw用ps切片做网站网站建设营销外包公司
  • 宿迁网站建设推广公司长春网站制作企业