当前位置: 首页 > news >正文

怎样做才能发布你的网站shopify是什么平台

怎样做才能发布你的网站,shopify是什么平台,米特号类似网站,西安买公司的网站建设文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 了解Spark的MLlib概念; ⚪ 掌握Spark的MLlib基本数据模型; ⚪ 掌握Spark的MLlib统计量基础; 一、Spark MLlib介绍 1. 概述 MLlib是Apache Spark的可迭代机器学习库。 2. 易于使用 …文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 了解Spark的MLlib概念; ⚪掌握Spark的MLlib基本数据模型; ⚪掌握Spark的MLlib统计量基础; 一、Spark MLlib介绍 1.概述 MLlib是Apache Spark的可迭代机器学习库。 2. 易于使用 适用于Java、Scala、Python和R语言。 MLlib适用于Spark的API,并与Python中的NumPy(从Spark 0.9开始)和R库(从Spark 1.5开始)互操作。 您可以使用任何Hadoop数据源(例如HDFS,HBase或本地文件),从而轻松插入Hadoop工作流程。 案例: // 通过Python调用MLib data = spark.read.format("libsvm").load("hdfs://...") model =KMeans(k=10).fit(data) 3. 执行高效 高质量的算法,比 MapReduce 快100倍。 Spark擅长迭代计算,使MLlib能够快速运行。 同时,我们关注算法性能:MLlib包含利用迭代的高质量算法,并且可以产生比MapReduce上有时使用的一次通过近似更好的结果。Hadoop 和 Spark的数据模型,如下图所示。 4. 易于部署 Spark运行在Hadoop,Apache Mesos,Kubernetes,standalone或云端,针对不同的数据源。 您可以使用其独立群集模式,EC2,Hadoop YARN,Mesos或Kubernetes运行Spark。 访问HDFS,Apache Cassandra,Apache HBase,Apache Hive和数百个其他数据源中的数据。 5. 算法 MLlib包含许多算法和实用程序。 ML算法包括: 1.分类:逻辑回归,朴素贝叶斯,......。 2.回归:广义线性回归,生存回归,......。 3.决策树,随机森林和梯度提升树。 4.建议:交替最小二乘法(ALS)。 5.聚类:K均值,高斯混合(GMM),......。 6.主题建模:潜在Dirichlet分配(LDA)。 7.频繁项目集,关联规则和顺序模式挖掘。 ML工作流程工具包括: 1. 特征转换:标准化,规范化,散列,......。 2. ML Pipeline construction。 3.模型评估和超级参数调整。 4.ML持久性:保存和加载模型和Pipelines。 其他工具包括: 分布式线性代数:SVD,PCA,......。 统计:汇总统计,假设检验,......。 6. 总结 MLlib是一个构建在Spark上的、专门针对大数据处理的并发式高速机器学习库,其特点是采用较为先进的迭代式、内存存储的分析计算,使得数据的计算处理速度大大高于普通的数据处理引擎。 MLlib机器学习库还在不停地更新中,Apache的相关研究人员仍在不停地为其中添加更多的机器学习算法。目前MLlib中已经有通用的学习算法和工具类,包括统计、分类、回归、聚类、降维等。 MLlib采用Scala语言编写,Scala语言是运行在JVM上的一种函数式编程语言,特点就是可移植性强,“一次编写,到处运行”是其最重要的特点。借助于RDD数据统一输入格式,让用户可以在不同的IDE上编写数据处理程序,通过本地化测试后可以在略微修改运行参数后直接在集群上运行。对结果的获取更为可视化和直观,不会因为运行系统底层的不同而造成结果的差异与改变。 二、MLlib基本数据模型 1. 概述 RDD是MLlib专用的数据格式,它参考了Scala函数式编程思想,并大胆引入统计分析概念,将存储数据转化成向量和矩阵的形式进行存储和计算,这样将数据定量化表示,能更准确地整理和分析结果。 多种数据类型 MLlib先天就支持较多的数据格式,从最基本的Spark数据集RDD到部署在集群中的向量和矩阵。同样,MLlib还支持部署在本地计算机中的本地化格式。 下表给出了MLlib支持的数据类型。 类型名称 释义 Local vector 本地向量集。主要向Spark提供一组可进行操作的数据集合 Labeled point 向量标签。让用户能够分类不同的数据集合 Local matrix 本地矩阵。将数据结合以矩阵形式存储在本地计算机中 Distributed matrix 分布式矩阵。将矩阵集合以矩阵形式存储在分布式计算机中 以上就是MLlib支持的数据类型,其中分布式矩阵根据不同的作用和应用场景,又分为四种不同的类型。 2.本地向量 MLlib使用的本地化存储类型是向量,这里的向量主要由两类构成:稀疏型数据集(spares)和密集型数据集(dense)。例如一个向量数据(9,5,2,7),按密集型数据格式可以被设定成(9,5,2,7)进行存储,数据集被作为一个集合的形式整体存储。而对于稀疏型数据,可以按向量的大小存储为(4,Array(0,1,2,3),Array(9,5,2,7))。 案例一: import org.apache.spark.{SparkConf,SparkContext} def main(args:Array[String]):Unit={ //--建立密集型向量 //--dense可以将其理解为MLlib专用的一种集合形式,它与Array类似 val vd=Vectors.dense(2,0,6)// println(vd) //①参:size。spare方法是将给定的数据Array数据(9,5,2,7)分解成指定的size个部分进行处理,本例中是7个 //③参:输入数据。本例中是Array(9,5,2,7) //②参:输入数据对应的下标,要求递增,并且最大值要小于等于size val vs=Vectors.sparse(7,Array(0,1,3,6),Array(9,5,2,7)) println(vs(6)) } }
http://www.yutouwan.com/news/185542/

相关文章:

  • 站长工具seo优化建议网站和平台有什么区别
  • 做网站用虚拟主机好不好威海seo
  • 射洪哪里可以做网站百度的网址是什么呢
  • 建设主题网站步骤重庆网站APP
  • 新手如何做移动端网站ssr网站开发
  • 百度网站建设在哪新津县网站建设
  • 做网站业务员夏邑县百城建设提质网站
  • 网站建设及推广好做吗专业的微商代运营团队
  • 网站好坏的标准凡科建站快车代理登录
  • 单页网站怎么做seo端游网络游戏排行榜
  • 网站备案做网站必须一个网站包括
  • 有没有专门的网站做品牌授权的网站开发者工具解读
  • 在网站开发中如何设置登录常用的软件开发工具有哪些
  • 临湘市网站网站程序模板
  • 温州网站开发app制作建设网站需要多长时间
  • wordpress多站点互相链接模板网站的建设方式与方法
  • 网站开发语言p长治县网站建设
  • 做网站好的网站建设公司京东网上商城购物
  • 多终端网站跨境c2c电商平台有哪些
  • 高端 旅游 网站建设下载素材第三方网站是怎么做
  • 建设银行苏州网站温州专业网站建设推广
  • 网站商城建设要多少钱免费云电脑
  • 什么是网站跳出率分销代理平台
  • 电商网站域名规则怎样做网络推广给我 你所有地方都上手
  • 做app原型的网站wordpress get the time
  • 开源程序网站公关公司排行榜
  • 政务信息网站建设工作海外网站服务器租用
  • 做展板好的网站标准版网站制作
  • 查看网站后台登陆地址wordpress幻灯片回收站在哪里
  • 宁波网站备案幕布拍照校园内部网站建设方案