当前位置: 首页 > news >正文

网站前台图片设置遵义市住房和城乡建设局官方网站6

网站前台图片设置,遵义市住房和城乡建设局官方网站6,如何编辑网站后台,网站域名和空间费用最近#xff0c; 我们一直在为Yap.TV实施推荐系统#xff1a;在安装应用程序并转到“ Just for you”选项卡后#xff0c;您可以看到它的运行情况。 我们以Apache Mahout为基础进行建议。 Mahout是一个“可扩展的机器学习库”#xff0c;其中包含使用协作过滤算法的基于用户… 最近 我们一直在为Yap.TV实施推荐系统在安装应用程序并转到“ Just for you”选项卡后您可以看到它的运行情况。 我们以Apache Mahout为基础进行建议。 Mahout是一个“可扩展的机器学习库”其中包含使用协作过滤算法的基于用户和项目的推荐者的本地和分布式实现。 现在我们将专注于本地单机实施。 如果您拥有数千万的首选项值它应该会很好地工作。 除此之外您可能应该考虑基于Hadoop的实现因为数据根本无法放入内存中。 用Mahout编写基本的推荐器非常简单 由于Mahout的可配置性很强因此通常有不同的实现方式可供选择。 我只描述我认为是“好的起点”。 基本 首先您需要一个包含输入数据的文件。 格式非常简单以逗号分隔的用户ID商品ID对或用户ID商品ID偏好值三倍。 这表示您已经知道哪些用户喜欢哪些项目以及可选多少例如1-5级。 id必须为整数首选项值被视为浮点型。 让我们首先创建一个基于用户的推荐器这是一个推荐器当被问到对用户A的推荐时它首先会查找与“ A”相似的用户然后尝试查找这些相似的用户已评价过的最佳商品但A还没有。 为此我们需要创建4个组件 数据模型 这将使用文件 用户相似度 给定两个用户的度量将返回一个数字表示他们的相似度 邻域 用于查找给定用户的邻域 推荐器 将这些片段组合在一起以产生推荐 对于一元输入数据用户喜欢项目或我们不知道的数据一个好的起点是 val dataModel new FileDataModel(file) val userSimilarity new LogLikelihoodSimilarity(dataModel) val neighborhood new NearestNUserNeighborhood(25, userSimilarity, dataModel) val recommender new GenericBooleanPrefUserBasedRecommender(dataModel, neighborhood, userSimilarity) 如果我们有偏好值输入数据中的三倍 val dataModel new FileDataModel(file) val userSimilarity new PearsonCorrelationSimilarity(dataModel) val neighborhood new NearestNUserNeighborhood(25, userSimilarity, dataModel) val recommender new GenericUserBasedRecommender(dataModel, neighborhood, userSimilarity) 现在我们准备得到一些建议 这很简单 // Gets 10 recommendations val result recommender.recommend(userId, 10)// We get back a list of item-estimated preference value, // sorted from the highest score result.foreach(r println(r.getItemID() : r.getValue()))线上 在线方面呢 以上内容对现有用户非常有用 在服务中注册的新用户呢 当然我们也想为他们提供一些合理的建议。 创建推荐器实例非常昂贵肯定会比“正常”网络请求花费更长的时间因此我们不能每次都创建一个新的推荐器。 幸运的是Mahout可以将临时用户添加到数据模型中。 常规设置如下 使用当前数据定期重新创建整个推荐器例如每天或每小时-取决于需要多长时间 进行推荐时请检查用户是否存在于系统中 如果是请像往常一样做建议 如果不是请创建一个临时用户填写首选项然后进行建议 如果内存有限第一部分定期重新创建推荐器实际上可能会很棘手创建新推荐器时您需要在内存中保存两个数据副本以便仍然能够处理来自服务器的请求老。 但这实际上与建议没有任何关系因此在这里我将不做详细介绍。 对于临时用户我们可以使用PlusAnonymousConcurrentUserDataModel实例包装数据模型。 此类允许获取临时用户ID。 该ID必须稍后发布以便可以重复使用此类ID的数量有限。 获取ID后我们必须填写首选项然后我们可以像往常一样继续进行推荐 val dataModel new PlusAnonymousConcurrentUserDataModel(new FileDataModel(file),100)val recommender: org.apache.mahout.cf.taste.recommender.Recommender ...// we are assuming a unary model: we only know which items a user likes def recommendFor(userId: Long, userPreferences: List[Long]) {if (userExistsInDataModel(userId)) {recommendForExistingUser(userId)} else {recommendForNewUser(userPreferences)} }def recommendForNewUser(userPreferences: List[Long]) {val tempUserId dataModel.takeAvailableUser()try {// filling in a Mahout data structure with the users preferencesval tempPrefs new BooleanUserPreferenceArray(userPreferences.size)tempPrefs.setUserID(0, tempUserId)userPreferences.zipWithIndex.foreach { case (preference, idx) tempPrefs.setItemID(idx, preference) }dataModel.setTempPrefs(tempPrefs, tempUserId)recommendForExistingUser(tempUserId)} finally {dataModel.releaseUser(tempUserId)} }def recommendForExistingUser(userId: Long) {recommender.recommend(userId, 10) }整合业务逻辑 由于某些业务规则我们经常想提高所选项目的得分。 在我们的用例中例如如果某节目有新剧集我们希望给它更高的分数。 使用Mahout的IDRescorer接口可以实现。 调用Recommender.recommend时提供了一个rescorer实例。 例如 val rescorer new IDRescorer {def rescore(id: Long, originalScore: Double) {if (showIsNew(id)) {originalScore * 1.2 } else {originalScore}}def isFiltered(id: Long) false }// Gets 10 recommendations val result recommender.recommend(userId, 10, rescorer)摘要 Mahout是创建推荐器的重要基础。 它是非常可配置的并提供许多扩展点。 选择正确的配置参数值设置评分和评估推荐结果还有很多工作要做但是算法是可靠的因此无需担心。 还有一本非常好的书《 Mahout in Action》 涵盖了推荐系统和Mahout的其他组件。 它基于版本0.5当前版本为0.8但是代码示例大部分都可以工作并且项目的主要逻辑是相同的。 参考 Adam Warski博客的Blog中 我们的JCG合作伙伴 Adam Warski 使用Apache Mahout创建了一个在线推荐系统 。 翻译自: https://www.javacodegeeks.com/2013/10/creating-an-on-line-recommender-system-with-apache-mahout.html
http://www.yutouwan.com/news/309613/

相关文章:

  • 宣传型网站建设网站建设需准备什么
  • 网站都有什么类型的邯郸网站设计建设
  • 郏县网站制作公司喀什的网站怎么做
  • 单位网站建设的请示找工作附近上8小时的双休
  • 实现微信绑定登录网站网站首页图片切换
  • 福州网站建设服务公司免费开源网站系统
  • 网站 前台 设计要求搭建h5流程
  • 万维网网站域名续费鞍山做网站优化
  • 做门户网站服务器选择企业建站服务器
  • 花瓣按照哪个网站做的网站建设 保定
  • 网站开发咨询网站上传照片 传不上去
  • 芜湖门户网站建设多少钱搜索引擎网站
  • 做流量网站挂广告还能挣钱吗域名历史记录查询
  • 邯郸怎样做网站深圳建设集团有限公司地址
  • 网站的链接建设网站建设技术的实现
  • h5 响应式网站国外怎么做自己的网站自建一个页面
  • 高端公司网站设计vps怎么做多个网站
  • wordpress多语言网站萧江做网站
  • 吉林电商网站建设价格男装网站模板演示
  • dede静态网站网站页脚的信息都有什么
  • 中元建设集团网站网站ipv6改造怎么做
  • 企业网站设计的主要目的做网站延期交付了
  • 济南网站推广哪家好公司微信公众号怎么创建
  • 更换模板对网站seo的影响沈阳外贸网站制作公司
  • 在线做头像网站网站怎么加二级域名
  • 建筑设计网站app济南网站建设流程
  • 安徽住房和建设厅网站公关工资一般多少钱一个月
  • 有哪些网站是提供设计图片的wordpress边栏小工具
  • 做网站公司选择哪家好郑州地区网站建设公司
  • 企业网站源码 vue公司网站首页的图片怎么做