当前位置: 首页 > news >正文

网站运营与维护北京官网建设公司

网站运营与维护,北京官网建设公司,装修设计费收费标准,心馨人生网站建设设计一、说明 逻辑回归模型是处理分类问题的最常见机器学习模型之一。二项式逻辑回归只是逻辑回归模型的一种类型。它指的是两个变量的分类#xff0c;其中概率用于确定二元结果#xff0c;因此“二项式”中的“bi”。结果为真或假 — 0 或 1。 二项式逻辑回归的一个例子是预测人… 一、说明 逻辑回归模型是处理分类问题的最常见机器学习模型之一。二项式逻辑回归只是逻辑回归模型的一种类型。它指的是两个变量的分类其中概率用于确定二元结果因此“二项式”中的“bi”。结果为真或假 — 0 或 1。 二项式逻辑回归的一个例子是预测人群中 COVID-19 的可能性。一个人要么感染了COVID-19要么没有必须建立一个阈值以尽可能准确地区分这些结果。 二、sigmoid函数 这些预测不适合一条线就像线性回归模型一样。相反逻辑回归模型拟合到右侧所示的 sigmoid 函数。 对于每个 x生成的 y 值表示结果为 True 的概率。在 COVID-19 示例中这表示医生对某人感染病毒的信心。在右图中阴性结果为蓝色阳性结果为红色。 图片来源作者 三、过程 要进行二项式逻辑回归我们需要做各种事情 创建训练数据集。使用 PyTorch 创建我们的模型。将我们的数据拟合到模型中。 逻辑回归问题的第一步是创建训练数据集。首先我们应该设置一个种子来确保我们的随机数据的可重复性。 import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn from torch.nn import Lineartorch.manual_seed(42) # set a random seed 我们必须使用 PyTorch 的线性模型因为我们正在处理一个输入 x 和一个输出 y。因此我们的模型是线性的。为此我们将使用 PyTorch 的函数Linear model Linear(in_features1, out_features1) # use a linear model 接下来我们必须生成蓝色 X 和红色 X 数据确保将它们从行向量重塑为列向量。蓝色的在 0 到 7 之间红色的在 7 到 10 之间。对于 y 值蓝点表示 COVID-19 测试阴性因此它们都将是 对于红点它们代表 COVID-19 测试呈阳性因此它们将为 1。下面是代码及其输出 blue_x (torch.rand(20) * 7).reshape(-1,1) # random floats between 0 and 7 blue_y torch.zeros(20).reshape(-1,1)red_x (torch.rand(20) * 73).reshape(-1,1) # random floats between 3 and 10 red_y torch.ones(20).reshape(-1,1)X torch.vstack([blue_x, red_x]) # matrix of x values Y torch.vstack([blue_y, red_y]) # matrix of y values 现在我们的代码应如下所示 import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn from torch.nn import Lineartorch.manual_seed(42) # set a random seedmodel Linear(in_features1, out_features1) # use a linear modelblue_x (torch.rand(20) * 7).reshape(-1,1) # random floats between 0 and 7 blue_y torch.zeros(20).reshape(-1,1)red_x (torch.rand(20) * 73).reshape(-1,1) # random floats between 3 and 10 red_y torch.ones(20).reshape(-1,1)X torch.vstack([blue_x, red_x]) # matrix of x values Y torch.vstack([blue_y, red_y]) # matrix of y values 四、优化 我们将使用梯度下降过程来优化 S 形函数的损失。损失是根据函数拟合数据的优度计算的数据由 S 形曲线的斜率和截距控制。我们需要梯度下降来找到最佳斜率和截距。 我们还将使用二进制交叉熵BCE作为我们的损失函数或对数损失函数。对于一般的逻辑回归不包含对数的损失函数将不起作用。 为了实现BCE作为我们的损失函数我们将它设置为我们的标准并将随机梯度下降作为我们优化它的手段。由于这是我们将要优化的函数我们需要传入模型参数和学习率。 epochs 2000 # run 2000 iterations criterion nn.BCELoss() # implement binary cross entropy loss functionoptimizer torch.optim.SGD(model.parameters(), lr .1) # stochastic gradient descent 现在我们准备开始梯度下降以优化我们的损失。我们必须将梯度归零通过将我们的数据插入 sigmoid 函数来找到 y-hat 值计算损失并找到损失函数的梯度。然后我们必须迈出一步确保存储我们的新斜率并为下一次迭代进行拦截。 optimizer.zero_grad() Yhat torch.sigmoid(model(X)) loss criterion(Yhat,Y) loss.backward() optimizer.step() 五、收尾 为了找到最佳斜率和截距我们本质上是在训练我们的模型。我们必须对多次迭代或纪元应用梯度下降。在此示例中我们将使用 2,000 个纪元进行演示。 epochs 2000 # run 2000 iterations criterion nn.BCELoss() # implement binary cross entropy loss functionoptimizer torch.optim.SGD(model.parameters(), lr .1) # stochastic gradient descentfor i in range(epochs):optimizer.zero_grad()Yhat torch.sigmoid(model(X))loss criterion(Yhat,Y)loss.backward()optimizer.step()print(fepoch: {i1})print(floss: {loss: .5f})print(fslope: {model.weight.item(): .5f})print(fintercept: {model.bias.item(): .5f})print() 将所有代码片段放在一起我们应该得到以下代码 import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn from torch.nn import Lineartorch.manual_seed(42) # set a random seedmodel Linear(in_features1, out_features1) # use a linear modelblue_x (torch.rand(20) * 7).reshape(-1,1) # random floats between 0 and 7 blue_y torch.zeros(20).reshape(-1,1)red_x (torch.rand(20) * 73).reshape(-1,1) # random floats between 3 and 10 red_y torch.ones(20).reshape(-1,1)X torch.vstack([blue_x, red_x]) # matrix of x values Y torch.vstack([blue_y, red_y]) # matrix of y valuesepochs 2000 # run 2000 iterations criterion nn.BCELoss() # implement binary cross entropy loss functionoptimizer torch.optim.SGD(model.parameters(), lr .1) # stochastic gradient descentfor i in range(epochs):optimizer.zero_grad()Yhat torch.sigmoid(model(X))loss criterion(Yhat,Y)loss.backward()optimizer.step()print(fepoch: {i1})print(floss: {loss: .5f})print(fslope: {model.weight.item(): .5f})print(fintercept: {model.bias.item(): .5f})print() 两千个时期后的最终输出epoch: 2000 loss: 0.53861 slope: 0.61276 intercept: -3.17314 两千个时期后的最终输出 epoch: 2000 loss: 0.53861 slope: 0.61276 intercept: -3.17314 六、可视化 最后我们可以将数据与 sigmoid 函数一起绘制以获得以下可视化效果 x np.arange(0,10,.1) y model.weight.item()*x model.bias.item()plt.plot(x, 1/(1 np.exp(-y)), colorgreen)plt.xlim(0,10) plt.scatter(blue_x, blue_y, colorblue) plt.scatter(red_x, red_y, colorred)plt.show() 图片来源作者 七、局限性 二元分类的最大问题之一是需要阈值。在逻辑回归的情况下此阈值应为 x 值其中 y 为 50%。我们试图回答的问题是将阈值放在哪里 在 COVID-19 测试的情况下原始示例说明了这种困境。如果我们将阈值设置为 x5我们可以清楚地看到应该是红色的蓝点和应该是蓝色的红点。 悬垂的红点称为误报即模型错误地预测正类的区域。悬垂的蓝点称为假阴性 - 模型错误地预测负类的区域。 八、结论 成功的二项式逻辑回归模型将减少假阴性的数量因为这些假阴性通常会导致最大的危险。患有COVID-19但检测呈阴性对他人的健康和安全构成严重风险。 通过对可用数据使用二项式逻辑回归我们可以确定放置阈值的最佳位置从而有助于减少不确定性并做出更明智的决策。
http://www.yutouwan.com/news/451433/

相关文章:

  • 房地产行业网站外包公司值得去吗
  • 新时代文明实践站模板网络营销的概念
  • 网站建设年度汇报玉环做企业网站
  • 延安市建设厅网站免费做名片的网站
  • 基于php网站建设设计网站个人备案
  • 网站标题title罗湖区住房和建设局官网
  • 影楼网站源码php网站的建设及发布步骤
  • 哪个跨境电商网站做的最好保定网站建设公司
  • 衡水移动网站建设wordpress登录不上
  • 东莞在哪里学网站建设网络营销个人网站
  • 苏州自助建站模板中国公路建设行业协会网站
  • 大亨网站开发wordpress创建编辑器可视化按钮
  • 网站建设学什么书推广员是什么工作
  • wordpress 获取当前分类id网站seo描述
  • 网站怎么做高权重展示类网站模板js
  • 珠海网站建设 amp 超凡科技网页设计与制作属于什么专业
  • 关于门户网站建设讲话西海岸城市建设局网站
  • 桂林商品房做民宿在哪个网站登记好网站建设需要硬件设备
  • 晋中公司做网站sns程序 整合wordpress
  • 职业资格证培训机构加盟seo学堂
  • 英文网站 常用字体网站流量查询工具
  • 网站怎么做视频背景上饶哪里可以学网站建设
  • 网站下载免费软件保定网络营销网站
  • 把自己做的网站进行app封包太原网站排名以客为尊
  • 兖州市做网站免费网站建设公司代理
  • 高端网站建设开发石家庄住房和城乡建设厅官方网站
  • php网站模板免费下载营销型网站制作msgg
  • 注册国外网站用什么邮箱商城网站怎么做优化
  • 做电商宠物带哪个网站最好贺州seo
  • 上海网站 备案查询班级优化大师官网下载