当前位置: 首页 > news >正文

链接网站怎么做廊坊百度推广优化

链接网站怎么做,廊坊百度推广优化,wap网站不流行,pc端ui设计文章目录 CIFAR10数据集介绍1. 数据的下载2.修改模型与前面的参数设置保持一致3. 新建模型4. 从数据集中分批量读取数据5. 定义损失函数6. 定义优化器7. 开始训练8.测试模型 9. 手写体图片的可视化10. 多幅图片的可视化 思考题11. 读取测试集的图片预测值#xff08;神经网络的… 文章目录 CIFAR10数据集介绍1. 数据的下载2.修改模型与前面的参数设置保持一致3. 新建模型4. 从数据集中分批量读取数据5. 定义损失函数6. 定义优化器7. 开始训练8.测试模型 9. 手写体图片的可视化10. 多幅图片的可视化 思考题11. 读取测试集的图片预测值神经网络的输出为1012. 采用pandas可视化数据13. 对预测错误的样本点进行可视化14. 看看错误样本被预测为哪些数据 15.输出错误的模型类别 CIFAR10数据集介绍 CIFAR-10 数据集由10个类别的60000张32x32彩色图像组成每类6000张图像。有50000张训练图像和10000张测试图像。数据集分为五个训练批次 和一个测试批次每个批次有10000张图像。测试批次包含从每个类别中随机选择的1000张图像。训练批次包含随机顺序的剩余图像但一些训练批次 可能包含比另一个类别更多的图像。在它们之间训练批次包含来自每个类的5000张图像。以下是数据集中的类以及每个类中的10张随机图像 因为CIFAR10数据集颜色通道有3个所以卷积层L1的输入通道数量in_channels需要设为3。全连接层fc1的输入维度设为400这与上例设为256有所不同原因是初始输入数据的形状不一样经过卷积池化后输出的数据形状是不一样的。如果是采用动态图开发模型那么有一种便捷的方式查看中间结果的形状即在forward()方法中用print函数把中间结果的形状打印出来。根据中间结果的形状决定接下来各网络层的参数。 1. 数据的下载 import torch import torchvision.transforms as transforms from torchvision.datasets import CIFAR10 train_dataset CIFAR10(root./data/CIFAR10,trainTrue,transformtransforms.ToTensor(),downloadTrue) test_dataset CIFAR10(root./data/CIFAR10, trainFalse,transformtransforms.ToTensor())Files already downloaded and verifiedtrain_dataset[0][0].shapetorch.Size([3, 32, 32])train_dataset[0][1]62.修改模型与前面的参数设置保持一致 from torch import nnclass Lenet5(nn.Module):def __init__(self):super(Lenet5,self).__init__()#1 32-5/(1)28self.featuresnn.Sequential(#定义第一个卷积层nn.Conv2d(in_channels3,out_channels6,kernel_size(5,5),stride1),nn.ReLU(),nn.AvgPool2d(kernel_size2,stride2),#定义第二个卷积层nn.Conv2d(in_channels6,out_channels16,kernel_size(5,5),stride1),nn.ReLU(),nn.MaxPool2d(kernel_size2,stride2),)#定义全连接层self.classfiernn.Sequential(nn.Linear(in_features400,out_features120),nn.ReLU(),nn.Linear(in_features120,out_features84),nn.ReLU(),nn.Linear(in_features84,out_features10), )def forward(self,x):xself.features(x)xtorch.flatten(x,1)resultself.classfier(x)return result 3. 新建模型 modelLenet5() devicetorch.device(cuda:0 if torch.cuda.is_available() else cpu) modelmodel.to(device)4. 从数据集中分批量读取数据 #加载数据集 batch_size32 train_loader torch.utils.data.DataLoader(train_dataset, batch_size, shuffleTrue) test_loader torch.utils.data.DataLoader(test_dataset, batch_size, shuffleFalse) # 类别信息也是需要我们给定的 classes (plane, car, bird, cat,deer, dog, frog, horse, ship, truck)5. 定义损失函数 from torch import optimloss_funnn.CrossEntropyLoss() loss_lst[]6. 定义优化器 optimizeroptim.SGD(paramsmodel.parameters(),lr0.001,momentum0.9)7. 开始训练 import time start_timetime.time() #训练的迭代次数 for epoch in range(10):loss_i0for i,(batch_data,batch_label) in enumerate(train_loader):#清空优化器的梯度optimizer.zero_grad()#模型前向预测predmodel(batch_data)lossloss_fun(pred,batch_label)loss_ilossloss.backward()optimizer.step()if (i1)%2000:print(第%d次训练第%d批次损失为%.2f%(epoch,i,loss_i/200))loss_i0 end_timetime.time() print(共训练了%d 秒%(end_time-start_time))第0次训练第199批次损失为2.30 第0次训练第399批次损失为2.30 第0次训练第599批次损失为2.30 第0次训练第799批次损失为2.30 第0次训练第999批次损失为2.30 第0次训练第1199批次损失为2.30 第0次训练第1399批次损失为2.30 第1次训练第199批次损失为2.30 第1次训练第399批次损失为2.30 第1次训练第599批次损失为2.30 第1次训练第799批次损失为2.30 第1次训练第999批次损失为2.29 第1次训练第1199批次损失为2.27 第1次训练第1399批次损失为2.18 第2次训练第199批次损失为2.07 第2次训练第399批次损失为2.04 第2次训练第599批次损失为2.03 第2次训练第799批次损失为2.00 第2次训练第999批次损失为1.98 第2次训练第1199批次损失为1.96 第2次训练第1399批次损失为1.95 第3次训练第199批次损失为1.89 第3次训练第399批次损失为1.86 第3次训练第599批次损失为1.84 第3次训练第799批次损失为1.80 第3次训练第999批次损失为1.75 第3次训练第1199批次损失为1.71 第3次训练第1399批次损失为1.71 第4次训练第199批次损失为1.66 第4次训练第399批次损失为1.65 第4次训练第599批次损失为1.63 第4次训练第799批次损失为1.61 第4次训练第999批次损失为1.62 第4次训练第1199批次损失为1.60 第4次训练第1399批次损失为1.59 第5次训练第199批次损失为1.56 第5次训练第399批次损失为1.56 第5次训练第599批次损失为1.54 第5次训练第799批次损失为1.55 第5次训练第999批次损失为1.52 第5次训练第1199批次损失为1.52 第5次训练第1399批次损失为1.49 第6次训练第199批次损失为1.50 第6次训练第399批次损失为1.47 第6次训练第599批次损失为1.46 第6次训练第799批次损失为1.47 第6次训练第999批次损失为1.46 第6次训练第1199批次损失为1.43 第6次训练第1399批次损失为1.45 第7次训练第199批次损失为1.42 第7次训练第399批次损失为1.42 第7次训练第599批次损失为1.39 第7次训练第799批次损失为1.39 第7次训练第999批次损失为1.40 第7次训练第1199批次损失为1.40 第7次训练第1399批次损失为1.40 第8次训练第199批次损失为1.36 第8次训练第399批次损失为1.37 第8次训练第599批次损失为1.38 第8次训练第799批次损失为1.37 第8次训练第999批次损失为1.34 第8次训练第1199批次损失为1.37 第8次训练第1399批次损失为1.35 第9次训练第199批次损失为1.31 第9次训练第399批次损失为1.31 第9次训练第599批次损失为1.31 第9次训练第799批次损失为1.31 第9次训练第999批次损失为1.34 第9次训练第1199批次损失为1.32 第9次训练第1399批次损失为1.31 共训练了156 秒8.测试模型 len(test_dataset)10000correct0 for batch_data,batch_label in test_loader:pred_testmodel(batch_data)pred_resulttorch.max(pred_test.data,1)[1]correct(pred_resultbatch_label).sum() print(准确率为:%.2f%%%(correct/len(test_dataset)))准确率为:0.53%9. 手写体图片的可视化 from torchvision import transforms as Timport torchlen(train_dataset)50000train_dataset[0][0].shapetorch.Size([3, 32, 32])import matplotlib.pyplot as plt plt.imshow(train_dataset[0][0][0],cmapgray) plt.axis(off)(-0.5, 31.5, 31.5, -0.5)plt.imshow(train_dataset[0][0][0]) plt.axis(off)(-0.5, 31.5, 31.5, -0.5)10. 多幅图片的可视化 from matplotlib import pyplot as plt plt.figure(figsize(20,15)) cols10 rows10 for i in range(0,rows):for j in range(0,cols):idxji*colsplt.subplot(rows,cols,idx1) plt.imshow(train_dataset[idx][0][0])plt.axis(off)import numpy as np img10 np.stack(list(train_dataset[i][0][0] for i in range(10)), axis1).reshape(32,320) plt.imshow(img10) plt.axis(off)(-0.5, 319.5, 31.5, -0.5)img100 np.stack( tuple( np.stack(tuple( train_dataset[j*10i][0][0] for i in range(10) ), axis1).reshape(32,320) for j in range(10)),axis0).reshape(320,320) plt.imshow(img100) plt.axis(off)(-0.5, 319.5, 319.5, -0.5)思考题 测试集中有哪些识别错误的手写数字图片 汇集整理并分析原因 11. 读取测试集的图片预测值神经网络的输出为10 pre_resulttorch.zeros(len(test_dataset),10) for i in range(len(test_dataset)):pre_result[i,:]model(torch.reshape(test_dataset[i][0],(-1,3,32,32))) pre_result tensor([[-0.4934, -1.0982, 0.4072, ..., -0.4038, -1.1655, -0.8201],[ 4.0154, 4.4736, -0.2921, ..., -2.3925, 4.3176, 4.1910],[ 1.3858, 3.2022, -0.7004, ..., -2.2767, 3.0923, 2.3740],...,[-1.9551, -3.8085, 1.7917, ..., 2.1104, -2.9573, -1.7387],[ 0.6681, -0.5328, 0.3059, ..., 0.1170, -2.5236, -0.5746],[-0.5194, -2.6185, 1.1929, ..., 3.7749, -2.3134, -1.5123]],grad_fnCopySlices)pre_result.shapetorch.Size([10000, 10])pre_result[:5]tensor([[-0.4934, -1.0982, 0.4072, 1.7331, -0.4456, 1.6433, 0.1721, -0.4038,-1.1655, -0.8201],[ 4.0154, 4.4736, -0.2921, -3.2882, -1.6234, -4.4814, -3.1241, -2.3925,4.3176, 4.1910],[ 1.3858, 3.2022, -0.7004, -1.0123, -1.7394, -1.6657, -3.2578, -2.2767,3.0923, 2.3740],[ 2.1151, 0.8262, 0.0071, -1.1410, -0.3051, -2.0239, -2.3023, -0.3573,2.9400, 0.5595],[-2.3524, -2.7907, 1.9834, 2.1088, 2.7645, 1.1118, 2.9782, -0.3876,-3.2325, -2.3916]], grad_fnSliceBackward0)#显示这10000张图片的标签 label_10000[test_dataset[i][1] for i in range(10000)] label_10000[3,8,8,0,6,6,1,6,3,1,0,9,5,7,9,8,5,7,8,6,7,0,4,9,5,2,4,0,9,6,6,5,4,5,9,2,4,1,9,5,4,6,5,6,0,9,3,9,7,6,9,8,0,3,8,8,7,7,4,6,7,3,6,3,6,2,1,2,3,7,2,6,8,8,0,2,9,3,3,8,8,1,1,7,2,5,2,7,8,9,0,3,8,6,4,6,6,0,0,7,4,5,6,3,1,1,3,6,8,7,4,0,6,2,1,3,0,4,2,7,8,3,1,2,8,0,8,3,5,2,4,1,8,9,1,2,9,7,2,9,6,5,6,3,8,7,6,2,5,2,8,9,6,0,0,5,2,9,5,4,2,1,6,6,8,4,8,4,5,0,9,9,9,8,9,9,3,7,5,0,0,5,2,2,3,8,6,3,4,0,5,8,0,1,7,2,8,8,7,8,5,1,8,7,1,3,0,5,7,9,7,4,5,9,8,0,7,9,8,2,7,6,9,4,3,9,6,4,7,6,5,1,5,8,8,0,4,0,5,5,1,1,8,9,0,3,1,9,2,2,5,3,9,9,4,0,3,0,0,9,8,1,5,7,0,8,2,4,7,0,2,3,6,3,8,5,0,3,4,3,9,0,6,1,0,9,1,0,7,9,1,2,6,9,3,4,6,0,0,6,6,6,3,2,6,1,8,2,1,6,8,6,8,0,4,0,7,7,5,5,3,5,2,3,4,1,7,5,4,6,1,9,3,6,6,9,3,8,0,7,2,6,2,5,8,5,4,6,8,9,9,1,0,2,2,7,3,2,8,0,9,5,8,1,9,4,1,3,8,1,4,7,9,4,2,7,0,7,0,6,6,9,0,9,2,8,7,2,2,5,1,2,6,2,9,6,2,3,0,3,9,8,7,8,8,4,0,1,8,2,7,9,3,6,1,9,0,7,3,7,4,5,0,0,2,9,3,4,0,6,2,5,3,7,3,7,2,5,3,1,1,4,9,9,5,7,5,0,2,2,2,9,7,3,9,4,3,5,4,6,5,6,1,4,3,4,4,3,7,8,3,7,8,0,5,7,6,0,5,4,8,6,8,5,5,9,9,9,5,0,1,0,8,1,1,8,0,2,2,0,4,6,5,4,9,4,7,9,9,4,5,6,6,1,5,3,8,9,5,8,5,7,0,7,0,5,0,0,4,6,9,0,9,5,6,6,6,2,9,0,1,7,6,7,5,9,1,6,2,5,5,5,8,5,9,4,6,4,3,2,0,7,6,2,2,3,9,7,9,2,6,7,1,3,6,6,8,9,7,5,4,0,8,4,0,9,3,4,8,9,6,9,2,6,1,4,7,3,5,3,8,5,0,2,1,6,4,3,3,9,6,9,8,8,5,8,6,6,2,1,7,7,1,2,7,9,9,4,4,1,2,5,6,8,7,6,8,3,0,5,5,3,0,7,9,1,3,4,4,5,3,9,5,6,9,2,1,1,4,1,9,4,7,6,3,8,9,0,1,3,6,3,6,3,2,0,3,1,0,5,9,6,4,8,9,6,9,6,3,0,3,2,2,7,8,3,8,2,7,5,7,2,4,8,7,4,2,9,8,8,6,8,8,7,4,3,3,8,4,9,4,8,8,1,8,2,1,3,6,5,4,2,7,9,9,4,1,4,1,3,2,7,0,7,9,7,6,6,2,5,9,2,9,1,2,2,6,8,2,1,3,6,6,0,1,2,7,0,5,4,6,1,6,4,0,2,2,6,0,5,9,1,7,6,7,0,3,9,6,8,3,0,3,4,7,7,1,4,7,2,7,1,4,7,4,4,8,4,7,7,5,3,7,2,0,8,9,5,8,3,6,2,0,8,7,3,7,6,5,3,1,3,2,2,5,4,1,2,9,2,7,0,7,2,1,3,2,0,2,4,7,9,8,9,0,7,7,0,7,8,4,6,3,3,0,1,3,7,0,1,3,1,4,2,3,8,4,2,3,7,8,4,3,0,9,0,0,1,0,4,4,6,7,6,1,1,3,7,3,5,2,6,6,5,8,7,1,6,8,8,5,3,0,4,0,1,3,8,8,0,6,9,9,9,5,5,8,6,0,0,4,2,3,2,7,2,2,5,9,8,9,1,7,4,0,3,0,1,3,8,3,9,6,1,4,7,0,3,7,8,9,1,1,6,6,6,6,9,1,9,9,4,2,1,7,0,6,8,1,9,2,9,0,4,7,8,3,1,2,0,1,5,8,4,6,3,8,1,3,8,...]import numpy pre_10000pre_result.detach() pre_10000tensor([[-0.4934, -1.0982, 0.4072, ..., -0.4038, -1.1655, -0.8201],[ 4.0154, 4.4736, -0.2921, ..., -2.3925, 4.3176, 4.1910],[ 1.3858, 3.2022, -0.7004, ..., -2.2767, 3.0923, 2.3740],...,[-1.9551, -3.8085, 1.7917, ..., 2.1104, -2.9573, -1.7387],[ 0.6681, -0.5328, 0.3059, ..., 0.1170, -2.5236, -0.5746],[-0.5194, -2.6185, 1.1929, ..., 3.7749, -2.3134, -1.5123]])pre_10000numpy.array(pre_10000) pre_10000array([[-0.49338394, -1.098238 , 0.40724754, ..., -0.40375623,-1.165497 , -0.820113 ],[ 4.0153656 , 4.4736323 , -0.29209492, ..., -2.392501 ,4.317573 , 4.190993 ],[ 1.3858219 , 3.2021556 , -0.70040375, ..., -2.2767155 ,3.092283 , 2.373978 ],...,[-1.9550545 , -3.808494 , 1.7917161 , ..., 2.110389 ,-2.9572597 , -1.7386926 ],[ 0.66809845, -0.5327946 , 0.30590305, ..., 0.11701592,-2.5236375 , -0.5746133 ],[-0.51935434, -2.6184506 , 1.1929085 , ..., 3.7748828 ,-2.3134274 , -1.5123445 ]], dtypefloat32)12. 采用pandas可视化数据 import pandas as pd tablepd.DataFrame(zip(pre_10000,label_10000)) table010[-0.49338394, -1.098238, 0.40724754, 1.7330961...31[4.0153656, 4.4736323, -0.29209492, -3.2882178...82[1.3858219, 3.2021556, -0.70040375, -1.0123051...83[2.11508, 0.82618773, 0.007076204, -1.1409527,...04[-2.352432, -2.7906854, 1.9833877, 2.1087575, ...6.........9995[-0.55809855, -4.3891077, -0.3040389, 3.001731...89996[-2.7151718, -4.1596007, 1.2393914, 2.8491826,...39997[-1.9550545, -3.808494, 1.7917161, 2.6365147, ...59998[0.66809845, -0.5327946, 0.30590305, -0.182045...19999[-0.51935434, -2.6184506, 1.1929085, 0.1288419...7 10000 rows × 2 columns table[0].valuesarray([array([-0.49338394, -1.098238 , 0.40724754, 1.7330961 , -0.4455951 ,1.6433077 , 0.1720748 , -0.40375623, -1.165497 , -0.820113 ],dtypefloat32) ,array([ 4.0153656 , 4.4736323 , -0.29209492, -3.2882178 , -1.6234205 ,-4.481386 , -3.1240807 , -2.392501 , 4.317573 , 4.190993 ],dtypefloat32) ,array([ 1.3858219 , 3.2021556 , -0.70040375, -1.0123051 , -1.7393746 ,-1.6656632 , -3.2578242 , -2.2767155 , 3.092283 , 2.373978 ],dtypefloat32) ,...,array([-1.9550545 , -3.808494 , 1.7917161 , 2.6365147 , 0.37311587,3.545672 , -0.43889195, 2.110389 , -2.9572597 , -1.7386926 ],dtypefloat32) ,array([ 0.66809845, -0.5327946 , 0.30590305, -0.18204585, 2.0045712 ,0.47369143, -0.3122899 , 0.11701592, -2.5236375 , -0.5746133 ],dtypefloat32) ,array([-0.51935434, -2.6184506 , 1.1929085 , 0.1288419 , 1.8770852 ,0.4296908 , -0.22015049, 3.7748828 , -2.3134274 , -1.5123445 ],dtypefloat32) ],dtypeobject)table[pred][np.argmax(table[0][i]) for i in range(table.shape[0])] table01pred0[-0.49338394, -1.098238, 0.40724754, 1.7330961...331[4.0153656, 4.4736323, -0.29209492, -3.2882178...812[1.3858219, 3.2021556, -0.70040375, -1.0123051...813[2.11508, 0.82618773, 0.007076204, -1.1409527,...084[-2.352432, -2.7906854, 1.9833877, 2.1087575, ...66............9995[-0.55809855, -4.3891077, -0.3040389, 3.001731...859996[-2.7151718, -4.1596007, 1.2393914, 2.8491826,...339997[-1.9550545, -3.808494, 1.7917161, 2.6365147, ...559998[0.66809845, -0.5327946, 0.30590305, -0.182045...149999[-0.51935434, -2.6184506, 1.1929085, 0.1288419...77 10000 rows × 3 columns 13. 对预测错误的样本点进行可视化 mismatchtable[table[1]!table[pred]]mismatch01pred1[4.0153656, 4.4736323, -0.29209492, -3.2882178...812[1.3858219, 3.2021556, -0.70040375, -1.0123051...813[2.11508, 0.82618773, 0.007076204, -1.1409527,...088[0.02641207, -3.6653092, 2.294829, 2.2884543, ...3512[-1.4556388, -1.7955011, -0.6100754, 1.169481,...56............9989[-0.2553262, -2.8777533, 3.4579017, 0.3079242,...249993[-0.077826336, -3.14616, 0.8994149, 3.5604722,...539994[-1.2543154, -2.4472265, 0.6754027, 2.0582433,...369995[-0.55809855, -4.3891077, -0.3040389, 3.001731...859998[0.66809845, -0.5327946, 0.30590305, -0.182045...14 4657 rows × 3 columns from matplotlib import pyplot as plt plt.scatter(mismatch[1],mismatch[pred])matplotlib.collections.PathCollection at 0x1b3a92ef91014. 看看错误样本被预测为哪些数据 mismatch[mismatch[1]9].sort_values(pred).indexInt64Index([2129, 1465, 2907, 787, 2902, 2307, 4588, 5737, 8276, 8225,...7635, 7553, 7526, 3999, 1626, 1639, 4193, 7198, 3957, 3344],dtypeint64, length396)idx_lstmismatch[mismatch[1]9].sort_values(pred).index.values idx_lst,len(idx_lst)(array([2129, 1465, 2907, 787, 2902, 2307, 4588, 5737, 8276, 8225, 8148,4836, 1155, 7218, 8034, 7412, 5069, 1629, 5094, 5109, 7685, 5397,1427, 5308, 8727, 2960, 2491, 6795, 1997, 6686, 9449, 6545, 8985,9401, 3564, 6034, 383, 9583, 9673, 507, 3288, 6868, 9133, 9085,577, 4261, 6974, 411, 6290, 5416, 5350, 5950, 5455, 5498, 6143,5964, 5864, 5877, 6188, 5939, 14, 5300, 3501, 3676, 3770, 3800,3850, 3893, 3902, 4233, 4252, 4253, 4276, 5335, 4297, 4418, 4445,4536, 4681, 6381, 4929, 4945, 5067, 5087, 5166, 5192, 4364, 4928,7024, 6542, 8144, 8312, 8385, 8406, 8453, 8465, 8521, 8585, 8673,8763, 8946, 9067, 9069, 9199, 9209, 9217, 9280, 9403, 9463, 9518,9692, 9743, 9871, 9875, 9881, 8066, 6509, 8057, 7826, 6741, 6811,6814, 6840, 6983, 7007, 3492, 7028, 7075, 7121, 7232, 7270, 7424,7431, 7444, 7492, 7499, 7501, 7578, 7639, 7729, 7767, 7792, 7818,7824, 7942, 3459, 4872, 1834, 1487, 1668, 1727, 1732, 1734, 1808,1814, 1815, 1831, 1927, 2111, 2126, 2190, 2246, 2290, 2433, 2596,2700, 2714, 1439, 1424, 1376, 1359, 28, 151, 172, 253, 259,335, 350, 591, 625, 2754, 734, 940, 951, 970, 1066, 1136,1177, 1199, 1222, 1231, 853, 2789, 9958, 2946, 3314, 3307, 2876,3208, 3166, 2944, 2817, 2305, 7522, 7155, 7220, 4590, 2899, 2446,2186, 7799, 9492, 3163, 4449, 2027, 2387, 1064, 3557, 2177, 654,9791, 2670, 2514, 2495, 3450, 8972, 3210, 3755, 2756, 7967, 3970,4550, 6017, 938, 744, 6951, 3397, 4852, 3133, 7931, 707, 3312,7470, 6871, 8292, 7100, 9529, 9100, 3853, 9060, 9732, 2521, 3789,2974, 5311, 3218, 5736, 3055, 7076, 1220, 9147, 1344, 532, 8218,3569, 1008, 8475, 8877, 1582, 8936, 4758, 1837, 9517, 252, 5832,1916, 6369, 4979, 9324, 6218, 9777, 7923, 4521, 2868, 213, 8083,5952, 5579, 4508, 5488, 2460, 5332, 5180, 8323, 8345, 3776, 2568,5151, 4570, 2854, 8488, 4874, 680, 2810, 1285, 6136, 3339, 9143,6852, 1906, 7067, 7073, 2975, 1924, 6804, 6755, 9299, 2019, 9445,9560, 360, 1601, 7297, 9122, 6377, 9214, 6167, 3980, 394, 7491,7581, 9349, 8953, 222, 139, 530, 3577, 9868, 247, 9099, 9026,209, 538, 3229, 9258, 585, 9204, 9643, 1492, 3609, 6570, 6561,6469, 6435, 6419, 2155, 6275, 4481, 2202, 1987, 2271, 2355, 2366,2432, 5400, 2497, 2727, 4931, 4619, 9884, 5902, 8796, 6848, 6960,8575, 8413, 981, 8272, 8145, 3172, 1221, 3168, 1256, 1889, 1291,3964, 7635, 7553, 7526, 3999, 1626, 1639, 4193, 7198, 3957, 3344],dtypeint64),396)import numpy as np imgnp.stack(list(test_dataset[idx_lst[i]][0][0] for i in range(5)),axis1).reshape(32,32*5) plt.imshow(img) plt.axis(off)(-0.5, 159.5, 31.5, -0.5)#显示4行 import numpy as np img20np.stack(tuple(np.stack(tuple(test_dataset[idx_lst[ij*5]][0][0] for i in range(5)),axis1).reshape(32,32*5) for j in range(4)),axis0).reshape(32*4,32*5) plt.imshow(img20) plt.axis(off)(-0.5, 159.5, 127.5, -0.5)15.输出错误的模型类别 idx_lstmismatch[mismatch[1]9].index.values table.iloc[idx_lst[:], 2].valuesarray([1, 1, 8, 1, 1, 8, 7, 8, 8, 6, 1, 1, 1, 1, 7, 0, 7, 0, 0, 8, 6, 8,0, 8, 1, 1, 3, 7, 5, 1, 4, 0, 1, 4, 1, 1, 1, 8, 6, 3, 1, 1, 0, 1,1, 6, 8, 1, 1, 8, 7, 8, 6, 1, 1, 1, 0, 1, 0, 1, 8, 6, 7, 8, 0, 8,1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 8, 7, 6, 7, 1, 8, 0, 7, 3, 1, 1, 0,8, 3, 3, 1, 8, 1, 8, 1, 2, 0, 8, 8, 3, 8, 1, 3, 7, 0, 3, 8, 3, 5,7, 1, 3, 1, 1, 8, 1, 3, 1, 7, 1, 7, 7, 1, 3, 0, 0, 1, 1, 0, 5, 7,6, 4, 3, 1, 8, 8, 1, 3, 5, 8, 0, 1, 5, 1, 7, 8, 4, 3, 1, 1, 1, 3,0, 6, 8, 8, 1, 3, 1, 7, 5, 1, 1, 5, 1, 1, 8, 8, 4, 7, 8, 8, 1, 1,1, 0, 1, 1, 1, 1, 1, 3, 8, 7, 7, 1, 4, 7, 0, 2, 8, 1, 6, 0, 4, 1,7, 1, 1, 8, 1, 6, 1, 0, 1, 0, 0, 7, 1, 7, 1, 1, 0, 5, 7, 1, 1, 0,8, 1, 1, 7, 1, 7, 5, 0, 6, 1, 1, 8, 1, 1, 7, 1, 4, 0, 7, 1, 7, 1,6, 8, 1, 6, 7, 1, 8, 8, 8, 1, 1, 0, 8, 8, 0, 1, 7, 0, 7, 1, 1, 1,8, 7, 0, 5, 4, 8, 0, 1, 1, 1, 1, 7, 7, 1, 6, 5, 1, 2, 8, 0, 2, 1,1, 7, 0, 1, 1, 1, 5, 7, 1, 1, 1, 2, 8, 8, 1, 7, 8, 1, 0, 1, 1, 1,3, 1, 1, 1, 7, 4, 1, 4, 0, 1, 1, 7, 1, 8, 0, 6, 0, 8, 0, 5, 1, 7,7, 1, 1, 8, 1, 1, 6, 7, 1, 8, 1, 1, 0, 1, 8, 6, 6, 1, 8, 3, 0, 8,5, 1, 1, 0, 8, 5, 7, 0, 7, 6, 1, 8, 1, 7, 1, 8, 1, 7, 6, 8, 0, 1,7, 0, 1, 3, 6, 1, 5, 7, 0, 8, 0, 1, 5, 1, 6, 3, 8, 1, 1, 1, 8, 1],dtypeint64)arr2table.iloc[idx_lst[:], 2].values print(错误模型共 str(len(arr2)) 个) for i in range(33):for j in range(12):print(classes[arr2[ji*12]],end )print()错误模型共396个 car car ship car car ship horse ship ship frog car car car car horse plane horse plane plane ship frog ship plane ship car car cat horse dog car deer plane car deer car car car ship frog cat car car plane car car frog ship car car ship horse ship frog car car car plane car plane car ship frog horse ship plane ship car car car car car car car car car frog ship horse frog horse car ship plane horse cat car car plane ship cat cat car ship car ship car bird plane ship ship cat ship car cat horse plane cat ship cat dog horse car cat car car ship car cat car horse car horse horse car cat plane plane car car plane dog horse frog deer cat car ship ship car cat dog ship plane car dog car horse ship deer cat car car car cat plane frog ship ship car cat car horse dog car car dog car car ship ship deer horse ship ship car car car plane car car car car car cat ship horse horse car deer horse plane bird ship car frog plane deer car horse car car ship car frog car plane car plane plane horse car horse car car plane dog horse car car plane ship car car horse car horse dog plane frog car car ship car car horse car deer plane horse car horse car frog ship car frog horse car ship ship ship car car plane ship ship plane car horse plane horse car car car ship horse plane dog deer ship plane car car car car horse horse car frog dog car bird ship plane bird car car horse plane car car car dog horse car car car bird ship ship car horse ship car plane car car car cat car car car horse deer car deer plane car car horse car ship plane frog plane ship plane dog car horse horse car car ship car car frog horse car ship car car plane car ship frog frog car ship cat plane ship dog car car plane ship dog horse plane horse frog car ship car horse car ship car horse frog ship plane car horse plane car cat frog car dog horse plane ship plane car dog car frog cat ship car car car ship car
http://www.sadfv.cn/news/325157/

相关文章:

  • 重庆 机械有限公司 沙坪坝网站建设wordpress打赏
  • 网站建设福州公司湖南品牌网站建设
  • 省建设厅官方网站公司企业网络维护外包
  • 自建国外购物网站网站建设的功能有哪些
  • 百度网盟推广 网站网页设计作业个人简历代码怎么写
  • 做信息网站要办icp证吗桂林到阳朔怎么走最方便
  • 网站建设51cto江苏省住房和城市建设厅网站
  • .net程序员网站开发工程师黄石网站设计
  • 石家庄市桥西区建设局网站免费网络游戏大全
  • 卖货小程序seo批量建站
  • 杭州模板开发建站素材下载网站开发文档
  • 合肥市建设工程造价管理站网站宝安中心做网站
  • 重庆企业网站seo上海app外包
  • 按营销型网站要求重做网站 费用小米路由可以做网站吗
  • 制作一个简单网站男人最爱的做网站
  • 西安凤城二路网站建设自己做的网站被攻击了
  • 网站推广策略与问题分析淄博网站制作网页营销
  • 企业为什么做网站推广大诚当道设计公司
  • 裕华区建设局网站微信商城怎么进
  • 用KEGG网站做通路富集分析软件开发公司简介模板免费
  • 微信公众平台网站开发建设银行网站怎么登录密码忘了怎么办
  • 衡阳市网站建设科技百科
  • 怎么在赶集网上做招聘网站湖北城乡建设网站
  • 网站建设历程wordpress侧栏滑动
  • 深圳网站建设制作哪家便宜百度网盟推广体验中心
  • 厦门建设网站的做原型网站
  • 网站极速备案seo站长工具查询系统
  • 站群推广网站后台管理系统怎么做
  • 手机app开发公司哪家好厦门seo优化推广
  • 视频素材交易网站建设娄底网站制作