莱阳市规划建设局网站,网站首页设计思路,官网的网站开发费用,网站兼容性是什么意思python量化之路#xff1a;获取历史某一时刻沪深上市公司股票代码及上市时间 最近开始玩股票量化#xff0c;由于想要做完整的股票回测#xff0c;因此股票的上市和退市信息就必不可少。因为我们回测的时候必须要知道某一日期沪深股票的成分包含哪些对吧。所以我们要把沪深全… python量化之路获取历史某一时刻沪深上市公司股票代码及上市时间 最近开始玩股票量化由于想要做完整的股票回测因此股票的上市和退市信息就必不可少。因为我们回测的时候必须要知道某一日期沪深股票的成分包含哪些对吧。所以我们要把沪深全部股票的上市时间、退市时间全部都爬下来保存到本地以后检索会更快。 0.1.确认主要工具 要用到的工具包括 (1)python基本工具 (2)pandas格式化数据处理 (3)通联数据接口http://www.datayes.com (4)通联接口APIhttps://api.wmcloud.com/docs/pages/viewpage.action?pageId1867781 1.开始获取数据 首先我们先要获取全部上市公司的上市时间和退市时间如果有的列表用通联数据的接口会发现我们的任务非常简单。 from pandas import DataFrame
from dataapiclient import Client
import json
client Client()
client.init(cae5c4acc4ad4ccb93a8aaac4b8adb04363feaa9852c34d14ddd2248613b09b3)
url/api/equity/getEqu.json?fieldticker,secShortName,listDate,delistDatelistStatusCDL,S,DE,UNsecIDtickerequTypeCDA
code, result client.getData(url)
j json.loads(result.decode())
d DataFrame(j[data])
d d.set_index(ticker)
d d[[secShortName,listDate,delistDate]]
d.to_csv(data/ticker_and _day_of_(de)list_date.csv) 如此一来ticker_and _day_of_(de)list_date.csv文件中就保存了所需内容。需要注意的是数据中有个特例DY600019 这是由于当时的重组并购导致主体变更因此通联数据在股票代码前加上了DY前缀以示区别。 然后为了方便的获取历史某一时刻全部可交易的A股股票代码我们定义一个函数默认使用本地数据get_a_stocks(dateNone, updateFalse)date默认日期是系统当前日期update表示是否需要更新本地数据。文件名beefinance.py from pandas import DataFrame
from datetime import datetime
from dataapiclient import Client
import pandas
import json
import os
import types
import datetime
import timedef get_a_stocks(dateNone, updateFalse):if date is None:date datetime.datetime.now()if isinstance(date,str):date datetime.datetime.strptime(date, %Y-%m-%d)if not isinstance(date,datetime.datetime):raise ValueError(date不接受此类型)if not isinstance(update, bool):raise ValueError(update不接受此类型)data_dir udatadata_filename data_dir u/ticker_and _day_of_(de)list_date.csvif not os.path.exists(data_dir):os.mkdir(data_dir)if (not os.path.exists(data_filename)) or update:client Client()client.init(cae5c4acc4ad4ccb93a8aaac4b8adb04363feaa9852c34d14ddd2248613b09b3)url/api/equity/getEqu.json?fieldticker,secShortName,listDate,delistDatelistStatusCDL,S,DE,UNsecIDtickerequTypeCDAcode, result client.getData(url)j json.loads(result.decode())d DataFrame(j[data])d d.set_index(ticker)d d[[secShortName,listDate,delistDate]]d.to_csv(data_filename, encodingutf-8)d[listDate] pandas.to_datetime(d[listDate])d[delistDate] pandas.to_datetime(d[delistDate])d d[d[listDate]date]d1 d[pandas.isnull(d[delistDate])]d2 d[pandas.notnull(d[delistDate])]d2 d2[d2[delistDate]date]d d1.append(d2)return delse:d pandas.read_csv(data_filename, index_colticker, parse_dates[listDate,delistDate],encodingutf-8)d[listDate] pandas.to_datetime(d[listDate])d[delistDate] pandas.to_datetime(d[delistDate])d d[d[listDate]date]d1 d[pandas.isnull(d[delistDate])]d2 d[pandas.notnull(d[delistDate])]d2 d2[d2[delistDate]date]d d1.append(d2)return d 下面测试效果 from beefinance import get_a_stocks
d get_a_stocks(2010-05-05)
print(d) data/ticker_and _day_of_(de)list_date.csvsecShortName listDate delistDate
ticker
000001 平安银行 1991-04-03 NaT
000002 万科A 1991-01-29 NaT
000004 国农科技 1991-01-14 NaT
000005 世纪星源 1990-12-10 NaT
000006 深振业A 1992-04-27 NaT
000007 全新好 1992-04-13 NaT
000008 神州高铁 1992-05-07 NaT
000009 中国宝安 1991-06-25 NaT
000010 美丽生态 1995-10-27 NaT
000011 深物业A 1992-03-30 NaT
000012 南玻A 1992-02-28 NaT
000014 沙河股份 1992-06-02 NaT
000016 深康佳A 1992-03-27 NaT
000017 深中华A 1992-03-31 NaT
000018 神州长城 1992-06-16 NaT
000019 深深宝A 1992-10-12 NaT
000020 深华发A 1992-04-28 NaT
000021 深科技 1994-02-02 NaT
000022 深赤湾A 1993-05-05 NaT
000023 深天地A 1993-04-29 NaT
000025 特力A 1993-06-21 NaT
000026 飞亚达A 1993-06-03 NaT
000027 深圳能源 1993-09-03 NaT
000028 国药一致 1993-08-09 NaT
000029 深深房A 1993-09-15 NaT
000030 富奥股份 1993-09-29 NaT
000031 中粮地产 1993-10-08 NaT
000032 深桑达A 1993-10-28 NaT
000033 *ST新都 1994-01-03 NaT
000034 神州数码 1994-05-09 NaT
... ... ... ...
601899 紫金矿业 2008-04-25 NaT
601918 *ST新集 2007-12-19 NaT
601919 中国远洋 2007-06-26 NaT
601939 建设银行 2007-09-25 NaT
601958 金钼股份 2008-04-17 NaT
601988 中国银行 2006-07-05 NaT
601989 中国重工 2009-12-16 NaT
601991 大唐发电 2006-12-20 NaT
601998 中信银行 2007-04-27 NaT
601999 出版传媒 2007-12-21 NaT
000024 招商地产 1993-06-07 2015-12-30
000522 白云山A 1993-11-08 2013-04-26
000527 美的电器 1993-11-12 2013-09-18
000562 宏源证券 1994-02-02 2015-01-26
000578 盐湖集团 1995-03-03 2011-03-22
000594 国恒退 1996-03-20 2015-07-13
000602 金马集团 1996-08-19 2013-08-14
000787 *ST创智 1997-06-26 2013-02-08
000805 *ST炎黄 1998-05-29 2013-03-27
600087 退市长油 1997-06-12 2014-06-05
600102 莱钢股份 1997-08-28 2012-02-28
600253 天方药业 2000-12-27 2013-07-15
600263 路桥建设 2000-07-25 2012-03-01
600553 太行水泥 2002-08-22 2011-02-18
600631 百联股份 1993-02-19 2011-08-23
600656 退市博元 1990-12-19 2016-05-13
600832 东方明珠 1994-02-24 2015-05-20
600991 广汽长丰 2004-06-14 2012-03-20
601268 *ST二重 2010-02-02 2015-05-21
601299 中国北车 2009-12-29 2015-05-20[1815 rows x 3 columns] 还不错。 转载于:https://www.cnblogs.com/medik/p/10989794.html